Dimers and discrete breathers in Bose-Einstein condensates in a quasi-periodic potential
- URL: http://arxiv.org/abs/2407.19880v1
- Date: Mon, 29 Jul 2024 10:56:51 GMT
- Title: Dimers and discrete breathers in Bose-Einstein condensates in a quasi-periodic potential
- Authors: Vladimir V. Konotop,
- Abstract summary: A quasi-one-dimensional Bose-Einstein condensate loaded into a quasi-periodic potential created by two sub-lattices of comparable amplitudes and incommensurate periods is considered.
Families of nonlinear modes are described with a special focus on dimers, which correspond to breather solutions of the Gross-Pitaevskii equation with a quasi-periodic potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A quasi-one-dimensional Bose-Einstein condensate loaded into a quasi-periodic potential created by two sub-lattices of comparable amplitudes and incommensurate periods is considered. Although the conventional tight-binding approximation is not applicable in this setting, the description can still be reduced to a discrete model that accounts for the modes below the mobility edge. In the respective discrete lattice, where no linear hopping exists, solutions and their dynamics are governed solely by nonlinear interactions. Families of nonlinear modes, including those with no linear limit, are described with a special focus on dimers, which correspond to breather solutions of the Gross-Pitaevskii equation with a quasi-periodic potential. The breathers are found to be stable for negative scattering lengths. Localization and stable propagation of breathers are also observed for positive scattering lengths at relatively weak and moderate nonlinearities.
Related papers
- Dynamics of discrete solitons in the fractional discrete nonlinear Schrödinger equation with the quasi-Riesz derivative [11.705651144832041]
This equation represents a novel discrete system in which the nearest-neighbor coupling is combined with long-range interactions.
The dispersion relation for lattice waves and the corresponding propagation band in the system's linear spectrum are found in an exact form for all values of LI.
Formation of single-site and two-site discrete solitons is explored, starting from the anti-continuum limit.
Mobility of the discrete solitons is considered too, by means of an estimate of the system's Peierls-Nabarro potential barrier.
arXiv Detail & Related papers (2024-07-17T09:52:18Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
We deal with a class of nonlinear Schr"odinger lattices with random potential and subquadratic power nonlinearity.
We show that the spreading process is subdiffusive and has complex microscopic organization.
The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border.
arXiv Detail & Related papers (2023-01-20T16:45:36Z) - Nonlinear perturbation of a high-order exceptional point: skin discrete
breathers and the hierarchical power-law scaling [5.249388938927588]
We study the nonlinear perturbation of a high-order exceptional point (EP) of the order equal to the system site number $L$ in a Hatano-Nelson model.
We find a class of discrete breathers that aggregate to one boundary, here named as it skin discrete breathers (SDBs)
The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP.
arXiv Detail & Related papers (2022-12-28T09:55:58Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Adiabaticity in nonreciprocal Landau-Zener tunneling [7.674326574708779]
We investigate the Landau-Zener tunneling (LZT) of a self-interacting two-level system in which the coupling between the levels is nonreciprocal.
We show that the adiabatic tunneling probabilities can be precisely predicted by the classical action at EPs in the weak nonreciprocal regime.
arXiv Detail & Related papers (2022-01-09T05:57:04Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Anti-Drude Metal of Bosons [0.0]
interacting bosons in the ground state exist either in the superfluid or insulating phases.
Superfluidity corresponds to frictionless flow of the matter field, and in optical conductivity is revealed through a distinct $delta$-functional peak.
In insulating phases, defined by zero static optical conductivity, this characteristic low-frequency feature is instead absent.
arXiv Detail & Related papers (2021-02-16T15:02:50Z) - Linear localization of zero modes in weakly coupled non-Hermitian
reservoirs [0.0]
We show that a non-Hermitian zero mode displays a linearly decreasing amplitude as a function of space.
We attribute it to the non-Bloch solution of a linear homogeneous recurrence relation.
arXiv Detail & Related papers (2018-04-02T15:02:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.