論文の概要: Practical and Robust Safety Guarantees for Advanced Counterfactual Learning to Rank
- arxiv url: http://arxiv.org/abs/2407.19943v1
- Date: Mon, 29 Jul 2024 12:23:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:56:27.240632
- Title: Practical and Robust Safety Guarantees for Advanced Counterfactual Learning to Rank
- Title(参考訳): 先進的な対人学習のランク付けのための実践的かつロバストな安全保証
- Authors: Shashank Gupta, Harrie Oosterhuis, Maarten de Rijke,
- Abstract要約: 我々は、既存の安全CLTRアプローチを一般化し、最先端の2重ロバスト(DR)CLTRと信頼バイアスに適用する。
本稿では,ユーザ行動に関する仮定を伴わずに,デプロイの安全性を提供する,PRPO(proximal ranking Policy Optimization)を提案する。
PRPOは、デプロイ時に無条件の安全性を持つ最初の方法であり、現実世界のアプリケーションの堅牢な安全性に変換される。
- 参考スコア(独自算出の注目度): 64.44255178199846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual learning to rank (CLTR ) can be risky; various circumstances can cause it to produce sub-optimal models that hurt performance when deployed. Safe CLTR was introduced to mitigate these risks when using inverse propensity scoring to correct for position bias. However, the existing safety measure for CLTR is not applicable to state-of-the-art CLTR, it cannot handle trust bias, and its guarantees rely on specific assumptions about user behavior. Our contributions are two-fold. First, we generalize the existing safe CLTR approach to make it applicable to state-of-the-art doubly robust (DR) CLTR and trust bias. Second, we propose a novel approach, proximal ranking policy optimization (PRPO ), that provides safety in deployment without assumptions about user behavior. PRPO removes incentives for learning ranking behavior that is too dissimilar to a safe ranking model. Thereby, PRPO imposes a limit on how much learned models can degrade performance metrics, without relying on any specific user assumptions. Our experiments show that both our novel safe doubly robust method and PRPO provide higher performance than the existing safe inverse propensity scoring approach. However, when circumstances are unexpected, the safe doubly robust approach can become unsafe and bring detrimental performance. In contrast, PRPO always maintains safety, even in maximally adversarial situations. By avoiding assumptions, PRPO is the first method with unconditional safety in deployment that translates to robust safety for real-world applications.
- Abstract(参考訳): CLTR(Counterfactual Learning to rank)はリスクがあり、様々な状況において、デプロイ時にパフォーマンスを損なうような準最適モデルを生成する可能性がある。
位置バイアスの補正に逆相対性スコアを用いた場合,これらのリスクを軽減するために安全CLTRを導入した。
しかし、CLTRの既存の安全対策は最先端のCLTRには適用されず、信頼バイアスに対処できず、その保証はユーザの行動に関する特定の仮定に依存している。
私たちの貢献は2倍です。
まず、既存の安全CLTRアプローチを一般化し、最先端の2重ロバスト(DR)CLTRと信頼バイアスに適用する。
第2に,ユーザ行動に関する仮定を伴わずにデプロイの安全性を提供するPRPO(proximal ranking Policy Optimization)を提案する。
PRPOは、安全なランキングモデルとは相容れないランキング行動を学ぶためのインセンティブを取り除きます。
これにより、PRPOは、特定のユーザの仮定に頼ることなく、学習したモデルがパフォーマンスメトリクスをどれだけ劣化させるかに制限を課す。
提案手法とPRPOは, 従来の安全逆正則スコアリング手法よりも高い性能を示すことを示す。
しかし、状況が予期しない場合には、安全で二重に堅牢なアプローチは安全ではなく、有害なパフォーマンスをもたらす可能性がある。
対照的に、PRPOは常に安全を維持している。
PRPOは仮定を避けることで、デプロイにおいて無条件の安全性を持つ最初の方法であり、現実のアプリケーションにとって堅牢な安全性をもたらす。
関連論文リスト
- Proximal Ranking Policy Optimization for Practical Safety in Counterfactual Learning to Rank [64.44255178199846]
本稿では,ユーザ行動に関する仮定を伴わずにデプロイの安全性を提供する,PRPO (proximal ranking Policy Optimization) という新しいアプローチを提案する。
PRPOは、安全なランキングモデルとは相容れないランキング行動を学ぶためのインセンティブを取り除きます。
実験の結果,PRPOは既存の安全逆性評価手法よりも高い性能を示すことがわかった。
論文 参考訳(メタデータ) (2024-09-15T22:22:27Z) - Safe Reinforcement Learning with Learned Non-Markovian Safety Constraints [15.904640266226023]
我々は、安全に関する部分的状態行動軌跡の貢献を評価するために、信用割当を行う安全モデルの設計を行う。
学習された安全モデルを用いて安全なポリシーを最適化する有効なアルゴリズムを導出する。
安全報酬と安全コンプライアンスのトレードオフ係数を動的に適用する手法を考案する。
論文 参考訳(メタデータ) (2024-05-05T17:27:22Z) - Leveraging Approximate Model-based Shielding for Probabilistic Safety
Guarantees in Continuous Environments [63.053364805943026]
近似モデルベースの遮蔽フレームワークを連続的な設定に拡張する。
特に、テストベッドとしてSafety Gymを使用し、一般的な制約付きRLアルゴリズムとABBSのより直接的な比較を可能にします。
論文 参考訳(メタデータ) (2024-02-01T17:55:08Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
本稿では,安全な配置を理論的に保証する新たなリスク認識型対実学習ランク法を提案する。
提案手法の有効性を実験的に検証し,データが少ない場合の動作不良の早期回避に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-26T15:54:23Z) - Certifying Safety in Reinforcement Learning under Adversarial
Perturbation Attacks [23.907977144668838]
本稿では,PMDPの真の状態が学習時にわかっているという仮定を付加する,部分教師付き強化学習(PSRL)フレームワークを提案する。
逆入力摂動下でのPSRLポリシーの安全性を検証するための最初のアプローチと、PSRLを直接利用する2つの逆トレーニングアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-28T22:33:38Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Provable Safe Reinforcement Learning with Binary Feedback [62.257383728544006]
状態, アクションペアの安全性に対するバイナリフィードバックを提供するオフラインオラクルへのアクセスを与えられた場合, 証明可能な安全なRLの問題を考える。
我々は,その設定に対してブラックボックスPAC RLアルゴリズムに与えられた任意のMDP設定に適用可能な,新しいメタアルゴリズムSABREを提案する。
論文 参考訳(メタデータ) (2022-10-26T05:37:51Z) - Bayesian Robust Optimization for Imitation Learning [34.40385583372232]
逆強化学習は、パラメータ化された報酬関数を学習することにより、新しい状態への一般化を可能にする。
既存のIRLに基づく安全な模倣学習アプローチは、maxminフレームワークを使用してこの不確実性に対処する。
BROILは、リターン最大化とリスク最小化の動作を補間する自然な方法を提供する。
論文 参考訳(メタデータ) (2020-07-24T01:52:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。