From Flat to Spatial: Comparison of 4 methods constructing 3D, 2 and 1/2D Models from 2D Plans with neural networks
- URL: http://arxiv.org/abs/2407.19970v1
- Date: Mon, 29 Jul 2024 13:01:20 GMT
- Title: From Flat to Spatial: Comparison of 4 methods constructing 3D, 2 and 1/2D Models from 2D Plans with neural networks
- Authors: Jacob Sam, Karan Patel, Mike Saad,
- Abstract summary: The conversion of single images into 2 and 1/2D and 3D meshes is a promising technology that enhances design visualization and efficiency.
This paper evaluates four innovative methods: "One-2-3-45," " CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model," "Instant Mesh," and "Image-to-Mesh"
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of architecture, the conversion of single images into 2 and 1/2D and 3D meshes is a promising technology that enhances design visualization and efficiency. This paper evaluates four innovative methods: "One-2-3-45," "CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model," "Instant Mesh," and "Image-to-Mesh." These methods are at the forefront of this technology, focusing on their applicability in architectural design and visualization. They streamline the creation of 3D architectural models, enabling rapid prototyping and detailed visualization from minimal initial inputs, such as photographs or simple sketches.One-2-3-45 leverages a diffusion-based approach to generate multi-view reconstructions, ensuring high geometric fidelity and texture quality. CRM utilizes a convolutional network to integrate geometric priors into its architecture, producing detailed and textured meshes quickly and efficiently. Instant Mesh combines the strengths of multi-view diffusion and sparse-view models to offer speed and scalability, suitable for diverse architectural projects. Image-to-Mesh leverages a generative adversarial network (GAN) to produce 3D meshes from single images, focusing on maintaining high texture fidelity and geometric accuracy by incorporating image and depth map data into its training process. It uses a hybrid approach that combines voxel-based representations with surface reconstruction techniques to ensure detailed and realistic 3D models.This comparative study highlights each method's contribution to reducing design cycle times, improving accuracy, and enabling flexible adaptations to various architectural styles and requirements. By providing architects with powerful tools for rapid visualization and iteration, these advancements in 3D mesh generation are set to revolutionize architectural practices.
Related papers
- GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.
Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models [66.83681825842135]
InstantMesh is a feed-forward framework for instant 3D mesh generation from a single image.
It features state-of-the-art generation quality and significant training scalability.
We release all the code, weights, and demo of InstantMesh with the intention that it can make substantial contributions to the community of 3D generative AI.
arXiv Detail & Related papers (2024-04-10T17:48:37Z) - FlexiDreamer: Single Image-to-3D Generation with FlexiCubes [20.871847154995688]
FlexiDreamer is a novel framework that directly reconstructs high-quality meshes from multi-view generated images.
Our approach can generate high-fidelity 3D meshes in the single image-to-3D downstream task with approximately 1 minute.
arXiv Detail & Related papers (2024-04-01T08:20:18Z) - CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction
Model [37.75256020559125]
We present a high-fidelity feed-forward single image-to-3D generative model.
We highlight the necessity of integrating geometric priors into network design.
Our model delivers a high-fidelity textured mesh from an image in just 10 seconds, without any test-time optimization.
arXiv Detail & Related papers (2024-03-08T04:25:29Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3D is a novel method for efficiently generating high-fidelity textured meshes from single-view images.
To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model.
arXiv Detail & Related papers (2023-10-23T15:02:23Z) - One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape
Optimization [30.951405623906258]
Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world.
We propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass.
arXiv Detail & Related papers (2023-06-29T13:28:16Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent.
In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations.
We introduce an expressive hybrid explicit-implicit network architecture that synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
arXiv Detail & Related papers (2021-12-15T08:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.