論文の概要: RelBench: A Benchmark for Deep Learning on Relational Databases
- arxiv url: http://arxiv.org/abs/2407.20060v1
- Date: Mon, 29 Jul 2024 14:46:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:24:58.409163
- Title: RelBench: A Benchmark for Deep Learning on Relational Databases
- Title(参考訳): RelBench:関係データベースのディープラーニングベンチマーク
- Authors: Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias Fey, Jan E. Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, Jure Leskovec,
- Abstract要約: 本稿では,グラフニューラルネットワークを用いたデータベース上でタスクを解くための公開ベンチマークであるRelBenchを紹介する。
私たちはRelBenchを使って、ディープラーニングインフラストラクチャに関する初の総合的な研究を行っています。
RDLは、人間の作業量を1桁以上削減しながら、より良く学習する。
- 参考スコア(独自算出の注目度): 78.52438155603781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present RelBench, a public benchmark for solving predictive tasks over relational databases with graph neural networks. RelBench provides databases and tasks spanning diverse domains and scales, and is intended to be a foundational infrastructure for future research. We use RelBench to conduct the first comprehensive study of Relational Deep Learning (RDL) (Fey et al., 2024), which combines graph neural network predictive models with (deep) tabular models that extract initial entity-level representations from raw tables. End-to-end learned RDL models fully exploit the predictive signal encoded in primary-foreign key links, marking a significant shift away from the dominant paradigm of manual feature engineering combined with tabular models. To thoroughly evaluate RDL against this prior gold-standard, we conduct an in-depth user study where an experienced data scientist manually engineers features for each task. In this study, RDL learns better models whilst reducing human work needed by more than an order of magnitude. This demonstrates the power of deep learning for solving predictive tasks over relational databases, opening up many new research opportunities enabled by RelBench.
- Abstract(参考訳): 本稿では,グラフニューラルネットワークを用いたリレーショナルデータベース上での予測タスクの一般ベンチマークであるRelBenchを紹介する。
RelBenchは、さまざまなドメインとスケールにまたがるデータベースとタスクを提供し、将来の研究の基盤となることを意図している。
我々はRelBenchを用いて、グラフニューラルネットワーク予測モデルと生のテーブルから初期エンティティレベルの表現を抽出する(ディープ)表モデルを組み合わせたRDL(Fey et al , 2024)の最初の包括的な研究を行う。
エンドツーエンドの学習RDLモデルは、一次外部キーリンクに符号化された予測信号を完全に活用する。
従来のゴールドスタンダードに対してRDLを徹底的に評価するために、経験豊富なデータサイエンティストが各タスクに手動でエンジニアを配置する詳細なユーザスタディを実施している。
本研究では、RDLが人間の作業量を1桁以上削減しつつ、より良いモデルを学ぶ。
これは、リレーショナルデータベース上の予測タスクを解決するためのディープラーニングのパワーを示し、RelBenchによって実現された多くの新しい研究機会を開放する。
関連論文リスト
- DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
複数のテーブルにまたがって配置されたデータを学ぶために、エンドツーエンドの表現アプローチを導入する。
メッセージパッシンググラフニューラルネットワークは、自動的にグラフを学習して、すべてのデータ入力を活用する表現を抽出する。
論文 参考訳(メタデータ) (2023-12-07T18:51:41Z) - GFS: Graph-based Feature Synthesis for Prediction over Relational
Databases [39.975491511390985]
グラフベース特徴合成(GFS)と呼ばれる新しいフレームワークを提案する。
GFSは関係データベースを異種グラフデータベースとして定式化する。
4つの実世界のマルチテーブルリレーショナルデータベースに対する実験では、GFSはリレーショナルデータベース用に設計された従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-12-04T16:54:40Z) - TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023 [33.70333110327871]
TabR -- 基本的には、中央にカスタムk-Nearest-Neighborsのようなコンポーネントを備えたフィードフォワードネットワークを提供します。
数百万オブジェクトまでのデータセットを持つ公開ベンチマークセットでは、TabRが最高の平均パフォーマンスを示している。
はるかに高いパフォーマンスに加えて、TabRはシンプルで、はるかに効率的です。
論文 参考訳(メタデータ) (2023-07-26T17:58:07Z) - Relational Extraction on Wikipedia Tables using Convolutional and Memory
Networks [6.200672130699805]
関係抽出(Relation extract、RE)は、テキスト内のエンティティ間の関係を抽出するタスクである。
我々は、エンティティをエンコードするために、畳み込みニューラルネットワーク(CNN)とBidirectional-Long Short Term Memory(BiLSTM)ネットワークからなる新しいモデルを導入する。
論文 参考訳(メタデータ) (2023-07-11T22:36:47Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
テキストにおける2つの主要な情報ソースの効果について検討する:テキストコンテキストとエンティティ参照(名前)
本稿では,関係抽出のための実体型コントラスト事前学習フレームワーク(RE)を提案する。
我々のフレームワークは、異なるREシナリオにおけるニューラルモデルの有効性と堅牢性を改善することができる。
論文 参考訳(メタデータ) (2020-10-05T11:21:59Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。