RelBench: A Benchmark for Deep Learning on Relational Databases
- URL: http://arxiv.org/abs/2407.20060v1
- Date: Mon, 29 Jul 2024 14:46:13 GMT
- Title: RelBench: A Benchmark for Deep Learning on Relational Databases
- Authors: Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias Fey, Jan E. Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, Jure Leskovec,
- Abstract summary: We present RelBench, a public benchmark for solving tasks over databases with graph neural networks.
We use RelBench to conduct the first comprehensive study of Deep Learning infrastructure.
RDL learns better whilst reducing human work needed by more than an order of magnitude.
- Score: 78.52438155603781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present RelBench, a public benchmark for solving predictive tasks over relational databases with graph neural networks. RelBench provides databases and tasks spanning diverse domains and scales, and is intended to be a foundational infrastructure for future research. We use RelBench to conduct the first comprehensive study of Relational Deep Learning (RDL) (Fey et al., 2024), which combines graph neural network predictive models with (deep) tabular models that extract initial entity-level representations from raw tables. End-to-end learned RDL models fully exploit the predictive signal encoded in primary-foreign key links, marking a significant shift away from the dominant paradigm of manual feature engineering combined with tabular models. To thoroughly evaluate RDL against this prior gold-standard, we conduct an in-depth user study where an experienced data scientist manually engineers features for each task. In this study, RDL learns better models whilst reducing human work needed by more than an order of magnitude. This demonstrates the power of deep learning for solving predictive tasks over relational databases, opening up many new research opportunities enabled by RelBench.
Related papers
- DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
We introduce an end-to-end representation approach to learn on data laid out across multiple tables.
Message Passing Graph Neural Networks can then automatically learn across the graph to extract representations that leverage all data input.
arXiv Detail & Related papers (2023-12-07T18:51:41Z) - GFS: Graph-based Feature Synthesis for Prediction over Relational
Databases [39.975491511390985]
We propose a novel framework called Graph-based Feature Synthesis (GFS)
GFS formulates relational database as a heterogeneous graph database.
In an experiment over four real-world multi-table relational databases, GFS outperforms previous methods designed for relational databases.
arXiv Detail & Related papers (2023-12-04T16:54:40Z) - TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023 [33.70333110327871]
We present TabR -- essentially, a feed-forward network with a custom k-Nearest-Neighbors-like component in the middle.
On a set of public benchmarks with datasets up to several million objects, TabR demonstrates the best average performance.
In addition to the much higher performance, TabR is simple and significantly more efficient.
arXiv Detail & Related papers (2023-07-26T17:58:07Z) - Relational Extraction on Wikipedia Tables using Convolutional and Memory
Networks [6.200672130699805]
Relation extraction (RE) is the task of extracting relations between entities in text.
We introduce a new model consisting of Convolutional Neural Network (CNN) and Bidirectional-Long Short Term Memory (BiLSTM) network to encode entities.
arXiv Detail & Related papers (2023-07-11T22:36:47Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
We study the effect of two main information sources in text: textual context and entity mentions (names)
We propose an entity-masked contrastive pre-training framework for relation extraction (RE)
Our framework can improve the effectiveness and robustness of neural models in different RE scenarios.
arXiv Detail & Related papers (2020-10-05T11:21:59Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.