Autonomous Bootstrapping of Quantum Dot Devices
- URL: http://arxiv.org/abs/2407.20061v1
- Date: Mon, 29 Jul 2024 14:47:46 GMT
- Title: Autonomous Bootstrapping of Quantum Dot Devices
- Authors: Anton Zubchenko, Danielle Middlebrooks, Torbjørn Rasmussen, Lara Lausen, Ferdinand Kuemmeth, Anasua Chatterjee, Justyna P. Zwolak,
- Abstract summary: We propose a bootstrapping algorithm for initializing a depletion mode QD device in preparation for subsequent phases of tuning.
We demonstrate that the combined algorithm can efficiently and reliably take a cooled-down QD device to a desired global state in under 8 minutes with a success rate of 96 %.
- Score: 26.47874938214435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semiconductor quantum dots (QD) are a promising platform for multiple different qubit implementations, all of which are voltage-controlled by programmable gate electrodes. However, as the QD arrays grow in size and complexity, tuning procedures that can fully autonomously handle the increasing number of control parameters are becoming essential for enabling scalability. We propose a bootstrapping algorithm for initializing a depletion mode QD device in preparation for subsequent phases of tuning. During bootstrapping, the QD device functionality is validated, all gates are characterized, and the QD charge sensor is made operational. We demonstrate the bootstrapping protocol in conjunction with a coarse tuning module, showing that the combined algorithm can efficiently and reliably take a cooled-down QD device to a desired global state configuration in under 8 minutes with a success rate of 96 %. Importantly, by following heuristic approaches to QD device initialization and combining the efficient ray-based measurement with the rapid radio-frequency reflectometry measurements, the proposed algorithm establishes a reference in terms of performance, reliability, and efficiency against which alternative algorithms can be benchmarked.
Related papers
- QDA$^2$: A principled approach to automatically annotating charge
stability diagrams [1.2437226707039448]
Gate-defined semiconductor quantum dot (QD) arrays are a promising platform for quantum computing.
Large configuration spaces and inherent noise make tuning of QD devices a nontrivial task.
QD auto-annotator is a classical algorithm for automatic interpretation and labeling of experimentally acquired data.
arXiv Detail & Related papers (2023-12-18T13:52:18Z) - Automated extraction of capacitive coupling for quantum dot systems [0.06775401033588706]
Gate-defined quantum dots (QDs) have appealing attributes as a quantum computing platform.
Near-term devices possess a range of possible imperfections that need to be accounted for during the tuning and operation of QD devices.
arXiv Detail & Related papers (2023-01-20T16:03:30Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Ray-based framework for state identification in quantum dot devices [0.0]
We introduce a measurement technique relying on one-dimensional projections of the device response in the multi-dimensional parameter space.
Dubbed as the ray-based classification (RBC) framework, we use this machine learning (ML) approach to implement a classifier for QD states.
We show that RBC surpasses the 82 % accuracy benchmark from the experimental implementation of image-based classification techniques.
arXiv Detail & Related papers (2021-02-23T16:38:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Evolutionary computation for adaptive quantum device design [0.0]
An evolutionary algorithm is presented which allows for the automatic tuning of the parameters of any arrangement of coupled qubits.
The algorithm's use is exemplified with the generation of schemes for the distribution of quantum states and the design of multi-qubit gates.
arXiv Detail & Related papers (2020-09-03T14:35:48Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.