Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems: An application on Hydrological Systems
- URL: http://arxiv.org/abs/2407.20152v2
- Date: Tue, 29 Apr 2025 03:25:18 GMT
- Title: Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems: An application on Hydrological Systems
- Authors: Rahul Ghosh, Arvind Renganathan, Zac McEachran, Kelly Lindsay, Somya Sharma, Michael Steinbach, John Nieber, Christopher Duffy, Vipin Kumar,
- Abstract summary: We propose a novel hierarchical recurrent neural architecture that factorizes the system dynamics at multiple temporal scales.<n> Experiments on several catchments from the National Weather Service North Central River Forecast Center show that FHNN outperforms standard baselines.<n>We show that FHNN can maintain accuracy even with limited training data through effective pre-training strategies and training global models.
- Score: 4.634606500665259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework for modeling multi-scale processes, and study its performance in the context of streamflow forecasting in hydrology. Specifically, we propose a novel hierarchical recurrent neural architecture that factorizes the system dynamics at multiple temporal scales and captures their interactions. This framework consists of an inverse and a forward model. The inverse model is used to empirically resolve the system's temporal modes from data (physical model simulations, observed data, or a combination of them from the past), and these states are then used in the forward model to predict streamflow. Experiments on several catchments from the National Weather Service North Central River Forecast Center show that FHNN outperforms standard baselines, including physics-based models and transformer-based approaches. The model demonstrates particular effectiveness in catchments with low runoff ratios and colder climates. We further validate FHNN on the CAMELS (Catchment Attributes and MEteorology for Large-sample Studies), which is a widely used continental-scale hydrology benchmark dataset, confirming consistent performance improvements for 1-7 day streamflow forecasts across diverse hydrological conditions. Additionally, we show that FHNN can maintain accuracy even with limited training data through effective pre-training strategies and training global models.
Related papers
- Update hydrological states or meteorological forcings? Comparing data assimilation methods for differentiable hydrologic models [0.923607423080658]
Data assimilation (DA) enables hydrologic models to update their internal states using near-real-time observations for more accurate forecasts.
We developed variational DA methods for differentiable models, including optimizing adjusters for just precipitation data.
Our DA framework does not need systematic training data and could serve as a practical DA scheme for whole river networks.
arXiv Detail & Related papers (2025-02-23T05:08:05Z) - Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
We introduce the Dynamic System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework.
By integrating Voronoi tessellations with deep learning models, DSOVT is adept at predicting dynamical systems with sparse, unstructured observations.
Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics.
arXiv Detail & Related papers (2024-08-31T13:43:52Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Toward Routing River Water in Land Surface Models with Recurrent Neural Networks [0.0]
We study the performance of recurrent neural networks (RNNs) for river routing in land surface models (LSMs)
Instead of observed precipitation, the LSM-RNN uses instantaneous runoff calculated from physics-based models as an input.
We train the model with data from river basins spanning the globe and test it using historical streamflow measurements.
arXiv Detail & Related papers (2024-04-22T14:21:37Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Deep Generative Data Assimilation in Multimodal Setting [0.1052166918701117]
In this work, we propose SLAMS: Score-based Latent Assimilation in Multimodal Setting.
We assimilate in-situ weather station data and ex-situ satellite imagery to calibrate the vertical temperature profiles, globally.
Our work is the first to apply deep generative framework for multimodal data assimilation using real-world datasets.
arXiv Detail & Related papers (2024-04-10T00:25:09Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
We address the issue of modeling and estimating changes in the state oftemporal- dynamical systems based on a sequence of observations like video frames.
This paper propose the universal expert module -- that is, optical flow estimation component, to capture the laws of general physical processes in a data-driven fashion.
We conduct extensive experiments and ablations to demonstrate that the proposed framework achieves large performance margins, compared with the existing SOTA baselines.
arXiv Detail & Related papers (2024-02-06T06:27:07Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Differentiable, learnable, regionalized process-based models with
physical outputs can approach state-of-the-art hydrologic prediction accuracy [1.181206257787103]
We show that differentiable, learnable, process-based models (called delta models here) can approach the performance level of LSTM for the intensively-observed variable (streamflow) with regionalized parameterization.
We use a simple hydrologic model HBV as the backbone and use embedded neural networks, which can only be trained in a differentiable programming framework.
arXiv Detail & Related papers (2022-03-28T15:06:53Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Transfer learning to improve streamflow forecasts in data sparse regions [0.0]
We study the methodology behind Transfer Learning (TL) through fine-tuning and parameter transferring for better generalization performance of streamflow prediction in data-sparse regions.
We propose a standard recurrent neural network in the form of Long Short-Term Memory (LSTM) to fit on a sufficiently large source domain dataset.
We present a methodology to implement transfer learning approaches for hydrologic applications by separating the spatial and temporal components of the model and training the model to generalize.
arXiv Detail & Related papers (2021-12-06T14:52:53Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.