Towards Localized Fine-Grained Control for Facial Expression Generation
- URL: http://arxiv.org/abs/2407.20175v1
- Date: Thu, 25 Jul 2024 18:29:48 GMT
- Title: Towards Localized Fine-Grained Control for Facial Expression Generation
- Authors: Tuomas Varanka, Huai-Qian Khor, Yante Li, Mengting Wei, Hanwei Kung, Nicu Sebe, Guoying Zhao,
- Abstract summary: Humans, particularly their faces, are central to content generation due to their ability to convey rich expressions and intent.
Current generative models mostly generate flat neutral expressions and characterless smiles without authenticity.
We propose the use of AUs (action units) for facial expression control in face generation.
- Score: 54.82883891478555
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative models have surged in popularity recently due to their ability to produce high-quality images and video. However, steering these models to produce images with specific attributes and precise control remains challenging. Humans, particularly their faces, are central to content generation due to their ability to convey rich expressions and intent. Current generative models mostly generate flat neutral expressions and characterless smiles without authenticity. Other basic expressions like anger are possible, but are limited to the stereotypical expression, while other unconventional facial expressions like doubtful are difficult to reliably generate. In this work, we propose the use of AUs (action units) for facial expression control in face generation. AUs describe individual facial muscle movements based on facial anatomy, allowing precise and localized control over the intensity of facial movements. By combining different action units, we unlock the ability to create unconventional facial expressions that go beyond typical emotional models, enabling nuanced and authentic reactions reflective of real-world expressions. The proposed method can be seamlessly integrated with both text and image prompts using adapters, offering precise and intuitive control of the generated results. Code and dataset are available in {https://github.com/tvaranka/fineface}.
Related papers
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
Existing facial expression recognition methods typically fine-tune a pre-trained visual encoder using discrete labels.
We observe that the rich knowledge in text embeddings, generated by vision-language models, is a promising alternative for learning discriminative facial expression representations.
We propose a novel knowledge-enhanced FER method with an emotional-to-neutral transformation.
arXiv Detail & Related papers (2024-09-13T07:28:57Z) - CSTalk: Correlation Supervised Speech-driven 3D Emotional Facial Animation Generation [13.27632316528572]
Speech-driven 3D facial animation technology has been developed for years, but its practical application still lacks expectations.
Main challenges lie in data limitations, lip alignment, and the naturalness of facial expressions.
This paper proposes a method called CSTalk that models the correlations among different regions of facial movements and supervises the training of the generative model to generate realistic expressions.
arXiv Detail & Related papers (2024-04-29T11:19:15Z) - Towards a Simultaneous and Granular Identity-Expression Control in Personalized Face Generation [34.72612800373437]
In human-centric content generation, pre-trained text-to-image models struggle to produce user-wanted portrait images.
We propose a novel multi-modal face generation framework, capable of simultaneous identity-expression control and more fine-grained expression synthesis.
arXiv Detail & Related papers (2024-01-02T13:28:39Z) - GaFET: Learning Geometry-aware Facial Expression Translation from
In-The-Wild Images [55.431697263581626]
We introduce a novel Geometry-aware Facial Expression Translation framework, which is based on parametric 3D facial representations and can stably decoupled expression.
We achieve higher-quality and more accurate facial expression transfer results compared to state-of-the-art methods, and demonstrate applicability of various poses and complex textures.
arXiv Detail & Related papers (2023-08-07T09:03:35Z) - Emotionally Enhanced Talking Face Generation [52.07451348895041]
We build a talking face generation framework conditioned on a categorical emotion to generate videos with appropriate expressions.
We show that our model can adapt to arbitrary identities, emotions, and languages.
Our proposed framework is equipped with a user-friendly web interface with a real-time experience for talking face generation with emotions.
arXiv Detail & Related papers (2023-03-21T02:33:27Z) - Continuously Controllable Facial Expression Editing in Talking Face
Videos [34.83353695337335]
Speech-related expressions and emotion-related expressions are often highly coupled.
Traditional image-to-image translation methods cannot work well in our application.
We propose a high-quality facial expression editing method for talking face videos.
arXiv Detail & Related papers (2022-09-17T09:05:47Z) - Emotion-Controllable Generalized Talking Face Generation [6.22276955954213]
We propose a one-shot facial geometry-aware emotional talking face generation method.
Our method can adapt to arbitrary faces captured in-the-wild by fine-tuning with only a single image of the target identity in neutral emotion.
arXiv Detail & Related papers (2022-05-02T18:41:36Z) - MOST-GAN: 3D Morphable StyleGAN for Disentangled Face Image Manipulation [69.35523133292389]
We propose a framework that a priori models physical attributes of the face explicitly, thus providing disentanglement by design.
Our method, MOST-GAN, integrates the expressive power and photorealism of style-based GANs with the physical disentanglement and flexibility of nonlinear 3D morphable models.
It achieves photorealistic manipulation of portrait images with fully disentangled 3D control over their physical attributes, enabling extreme manipulation of lighting, facial expression, and pose variations up to full profile view.
arXiv Detail & Related papers (2021-11-01T15:53:36Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
Deep generative models have achieved impressive results in the field of automated facial expression editing.
We propose a model that can be used to manipulate facial expressions in facial images according to continuous two-dimensional emotion labels.
arXiv Detail & Related papers (2020-06-22T13:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.