SAPG: Split and Aggregate Policy Gradients
- URL: http://arxiv.org/abs/2407.20230v1
- Date: Mon, 29 Jul 2024 17:59:50 GMT
- Title: SAPG: Split and Aggregate Policy Gradients
- Authors: Jayesh Singla, Ananye Agarwal, Deepak Pathak,
- Abstract summary: We propose a new on-policy RL algorithm that can effectively leverage large-scale environments by splitting them into chunks and fusing them back together via importance sampling.
Our algorithm, termed SAPG, shows significantly higher performance across a variety of challenging environments where vanilla PPO and other strong baselines fail to achieve high performance.
- Score: 37.433915947580076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite extreme sample inefficiency, on-policy reinforcement learning, aka policy gradients, has become a fundamental tool in decision-making problems. With the recent advances in GPU-driven simulation, the ability to collect large amounts of data for RL training has scaled exponentially. However, we show that current RL methods, e.g. PPO, fail to ingest the benefit of parallelized environments beyond a certain point and their performance saturates. To address this, we propose a new on-policy RL algorithm that can effectively leverage large-scale environments by splitting them into chunks and fusing them back together via importance sampling. Our algorithm, termed SAPG, shows significantly higher performance across a variety of challenging environments where vanilla PPO and other strong baselines fail to achieve high performance. Website at https://sapg-rl.github.io/
Related papers
- Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.
Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
We propose REBEL, a minimalist RL algorithm for the era of generative models.
In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL.
We find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO.
arXiv Detail & Related papers (2024-04-25T17:20:45Z) - The Effective Horizon Explains Deep RL Performance in Stochastic Environments [21.148001945560075]
Reinforcement learning (RL) theory has largely focused on proving mini complexity sample bounds.
We introduce a new RL algorithm, SQIRL, that iteratively learns a nearoptimal policy by exploring randomly to collect rollouts.
We leverage SQIRL to derive instance-dependent sample complexity bounds for RL that are exponential only in an "effective horizon" look-ahead and on the complexity of the class used for approximation.
arXiv Detail & Related papers (2023-12-13T18:58:56Z) - Bridging RL Theory and Practice with the Effective Horizon [18.706109961534676]
We show that prior bounds do not correlate well with when deep RL succeeds vs. fails.
We generalize this into a new complexity measure of an MDP that we call the effective horizon.
We also find that, unlike existing bounds, the effective horizon can predict the effects of using reward shaping or a pre-trained exploration policy.
arXiv Detail & Related papers (2023-04-19T17:59:01Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
offline reinforcement learning (RL) is challenged by the distributional shift between learning policies and datasets.
We propose a simple yet effective method to boost offline RL algorithms based on the observation that resampling a dataset keeps the distribution support unchanged.
We dub our method ReD (Return-based Data Rebalance), which can be implemented with less than 10 lines of code change and adds negligible running time.
arXiv Detail & Related papers (2022-10-17T16:34:01Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - POPO: Pessimistic Offline Policy Optimization [6.122342691982727]
We study why off-policy RL methods fail to learn in offline setting from the value function view.
We propose Pessimistic Offline Policy Optimization (POPO), which learns a pessimistic value function to get a strong policy.
We find that POPO performs surprisingly well and scales to tasks with high-dimensional state and action space.
arXiv Detail & Related papers (2020-12-26T06:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.