From A-to-Z Review of Clustering Validation Indices
- URL: http://arxiv.org/abs/2407.20246v1
- Date: Thu, 18 Jul 2024 13:52:02 GMT
- Title: From A-to-Z Review of Clustering Validation Indices
- Authors: Bryar A. Hassan, Noor Bahjat Tayfor, Alla A. Hassan, Aram M. Ahmed, Tarik A. Rashid, Naz N. Abdalla,
- Abstract summary: We review and evaluate the performance of internal and external clustering validation indices on the most common clustering algorithms.
We suggest a classification framework for examining the functionality of both internal and external clustering validation measures.
- Score: 4.08908337437878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering algorithms differ as they are susceptible to the intrinsic characteristics of the original dataset, including noise and dimensionality. The effectiveness of such clustering procedures directly impacts the homogeneity of clusters, underscoring the significance of evaluating algorithmic outcomes. Consequently, the assessment of clustering quality presents a significant and complex endeavor. A pivotal aspect affecting clustering validation is the cluster validity metric, which aids in determining the optimal number of clusters. The main goal of this study is to comprehensively review and explain the mathematical operation of internal and external cluster validity indices, but not all, to categorize these indices and to brainstorm suggestions for future advancement of clustering validation research. In addition, we review and evaluate the performance of internal and external clustering validation indices on the most common clustering algorithms, such as the evolutionary clustering algorithm star (ECA*). Finally, we suggest a classification framework for examining the functionality of both internal and external clustering validation measures regarding their ideal values, user-friendliness, responsiveness to input data, and appropriateness across various fields. This classification aids researchers in selecting the appropriate clustering validation measure to suit their specific requirements.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - Interpretable Clustering with the Distinguishability Criterion [0.4419843514606336]
We present a global criterion called the Distinguishability criterion to quantify the separability of identified clusters and validate inferred cluster configurations.
We propose a combined loss function-based computational framework that integrates the Distinguishability criterion with many commonly used clustering procedures.
We present these new algorithms as well as the results from comprehensive data analysis based on simulation studies and real data applications.
arXiv Detail & Related papers (2024-04-24T16:38:15Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
Disaggregated evaluation is a central task in AI fairness assessment, where the goal is to measure an AI system's performance across different subgroups.
We introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups.
arXiv Detail & Related papers (2024-01-26T14:21:45Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Cluster-level Group Representativity Fairness in $k$-means Clustering [3.420467786581458]
Clustering algorithms could generate clusters such that different groups are disadvantaged within different clusters.
We develop a clustering algorithm, building upon the centroid clustering paradigm pioneered by classical algorithms.
We show that our method is effective in enhancing cluster-level group representativity fairness significantly at low impact on cluster coherence.
arXiv Detail & Related papers (2022-12-29T22:02:28Z) - Significance-Based Categorical Data Clustering [7.421725101465365]
We use the likelihood ratio test to derive a test statistic that can serve as a significance-based objective function in categorical data clustering.
A new clustering algorithm is proposed in which the significance-based objective function is optimized via a Monte Carlo search procedure.
arXiv Detail & Related papers (2022-11-08T02:06:31Z) - A review of systematic selection of clustering algorithms and their
evaluation [0.0]
This paper aims to identify a systematic selection logic for clustering algorithms and corresponding validation concepts.
The goal is to enable potential users to choose an algorithm that fits best to their needs and the properties of their underlying data clustering problem.
arXiv Detail & Related papers (2021-06-24T07:01:46Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - The Area Under the ROC Curve as a Measure of Clustering Quality [0.0]
Area Under the Curve for Clustering (AUCC) is an internal/relative measure of clustering quality.
AUCC is a linear transformation of the Gamma criterion from Baker and Hubert (1975).
arXiv Detail & Related papers (2020-09-04T21:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.