Two-Phase Segmentation Approach for Accurate Left Ventricle Segmentation in Cardiac MRI using Machine Learning
- URL: http://arxiv.org/abs/2407.20387v1
- Date: Mon, 29 Jul 2024 19:26:24 GMT
- Title: Two-Phase Segmentation Approach for Accurate Left Ventricle Segmentation in Cardiac MRI using Machine Learning
- Authors: Maria Tamoor, Abbas Raza Ali, Philemon Philip, Ruqqayia Adil, Rabia Shahid, Asma Naseer,
- Abstract summary: The central challenge in this research revolves around the absence of a set of parameters applicable to all three types of LV slices.
To handle this issue, a new method is proposed to enhance LV segmentation.
The proposed method involves using distinct sets of parameters for each type of slice, resulting in a two-phase segmentation approach.
- Score: 0.8521378010565595
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Accurate segmentation of the Left Ventricle (LV) holds substantial importance due to its implications in disease detection, regional analysis, and the development of complex models for cardiac surgical planning. CMR is a golden standard for diagnosis of serveral cardiac diseases. LV in CMR comprises of three distinct sections: Basal, Mid-Ventricle, and Apical. This research focuses on the precise segmentation of the LV from Cardiac MRI (CMR) scans, joining with the capabilities of Machine Learning (ML). The central challenge in this research revolves around the absence of a set of parameters applicable to all three types of LV slices. Parameters optimized for basal slices often fall short when applied to mid-ventricular and apical slices, and vice versa. To handle this issue, a new method is proposed to enhance LV segmentation. The proposed method involves using distinct sets of parameters for each type of slice, resulting in a two-phase segmentation approach. The initial phase categorizes images into three groups based on the type of LV slice, while the second phase aims to segment CMR images using parameters derived from the preceding phase. A publicly available dataset (Automated Cardiac Diagnosis Challenge (ACDC)) is used. 10-Fold Cross Validation is used and it achieved a mean score of 0.9228. Comprehensive testing indicates that the best parameter set for a particular type of slice does not perform adequately for the other slice types. All results show that the proposed approach fills a critical void in parameter standardization through a two-phase segmentation model for the LV, aiming to not only improve the accuracy of cardiac image analysis but also contribute advancements to the field of LV segmentation.
Related papers
- An Improved Approach for Cardiac MRI Segmentation based on 3D UNet Combined with Papillary Muscle Exclusion [0.0]
It is crucial to develop robust algorithms for the precise segmentation of the heart structure during different phases.
In this work, an improved 3D UNet model is introduced to segment the myocardium and LV, while excluding papillary muscles.
For the practical testing of the proposed framework, a total of 8,400 cardiac MRI images were collected and analysed.
arXiv Detail & Related papers (2024-10-09T12:19:58Z) - Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles [0.0]
This paper aims to give a recipe for diagnostic centers as well as for clinics to automatically segment the myocardium based on small and low-quality labels on reconstructed SPECT.
A combination of Continuous Max-Flow (CMF) with prior shape information is developed to augment the 3D U-Net self-supervised learning (SSL) approach on various geometries of SPECT apparatus.
arXiv Detail & Related papers (2024-05-09T03:19:19Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Segmentation of the Left Ventricle by SDD double threshold selection and
CHT [18.104323389381126]
We propose a robust LV segmentation method based on slope difference distribution (SDD) double threshold selection and circular Hough transform (CHT)
The proposed method achieved 96.51% DICE score on the test set of automated cardiac diagnosis challenge (ACDC) which is higher than the best accuracy reported in recently published literatures.
arXiv Detail & Related papers (2020-07-21T08:50:21Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Automatic Right Ventricle Segmentation using Multi-Label Fusion in
Cardiac MRI [4.655680114261973]
This paper presents a fully automatic method for the segmentation of the RV in cardiac magnetic resonance images (MRI)
The method uses a coarse-to-fine segmentation strategy in combination with a multi-atlas propagation segmentation framework.
Based on a cross correlation metric, our method selects the best atlases for propagation allowing the refinement of the segmentation at each iteration of the propagation.
arXiv Detail & Related papers (2020-04-05T21:06:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.