Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles
- URL: http://arxiv.org/abs/2405.05520v1
- Date: Thu, 9 May 2024 03:19:19 GMT
- Title: Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles
- Authors: Ádám István Szűcs, Béla Kári, Oszkár Pártos,
- Abstract summary: This paper aims to give a recipe for diagnostic centers as well as for clinics to automatically segment the myocardium based on small and low-quality labels on reconstructed SPECT.
A combination of Continuous Max-Flow (CMF) with prior shape information is developed to augment the 3D U-Net self-supervised learning (SSL) approach on various geometries of SPECT apparatus.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-Photon Emission Computed Tomography (SPECT) left ventricular assessment protocols are important for detecting ischemia in high-risk patients. To quantitatively measure myocardial function, clinicians depend on commercially available solutions to segment and reorient the left ventricle (LV) for evaluation. Based on large normal datasets, the segmentation performance and the high price of these solutions can hinder the availability of reliable and precise localization of the LV delineation. To overcome the aforementioned shortcomings this paper aims to give a recipe for diagnostic centers as well as for clinics to automatically segment the myocardium based on small and low-quality labels on reconstructed SPECT, complete field-of-view (FOV) volumes. A combination of Continuous Max-Flow (CMF) with prior shape information is developed to augment the 3D U-Net self-supervised learning (SSL) approach on various geometries of SPECT apparatus. Experimental results on the acquired dataset have shown a 5-10\% increase in quantitative metrics based on the previous State-of-the-Art (SOTA) solutions, suggesting a good plausible way to tackle the few-shot SSL problem on high-noise SPECT cardiac datasets.
Related papers
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - Two-Phase Segmentation Approach for Accurate Left Ventricle Segmentation in Cardiac MRI using Machine Learning [0.8521378010565595]
The central challenge in this research revolves around the absence of a set of parameters applicable to all three types of LV slices.
To handle this issue, a new method is proposed to enhance LV segmentation.
The proposed method involves using distinct sets of parameters for each type of slice, resulting in a two-phase segmentation approach.
arXiv Detail & Related papers (2024-07-29T19:26:24Z) - DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography [37.32413956117856]
We propose an unsupervised and training-free method to identify End-Diastolic (ED) and End-Systolic (ES) frames.
By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images.
Our method achieves comparable accuracy to learning-based models without their associated drawbacks.
arXiv Detail & Related papers (2024-03-19T14:51:01Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Successive Subspace Learning for Cardiac Disease Classification with
Two-phase Deformation Fields from Cine MRI [36.044984400761535]
This work proposes a lightweight successive subspace learning framework for CVD classification.
It is based on an interpretable feedforward design, in conjunction with a cardiac atlas.
Compared with 3D CNN-based approaches, our framework achieves superior classification performance with 140$times$ fewer parameters.
arXiv Detail & Related papers (2023-01-21T15:00:59Z) - Left Ventricular Wall Motion Estimation by Active Polynomials for Acute
Myocardial Infarction Detection [18.93271742586598]
This paper proposes a novel approach, Active Polynomials, which can accurately estimate the global motion of the Left Ventricular (LV) wall from any echo in a robust and accurate way.
The proposed algorithm quantifies the true wall motion occurring in LV wall segments so as to assist cardiologists diagnose early signs of an acute MI.
arXiv Detail & Related papers (2020-08-11T10:29:22Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.