Dense Self-Supervised Learning for Medical Image Segmentation
- URL: http://arxiv.org/abs/2407.20395v1
- Date: Mon, 29 Jul 2024 19:42:22 GMT
- Title: Dense Self-Supervised Learning for Medical Image Segmentation
- Authors: Maxime Seince, Loic Le Folgoc, Luiz Augusto Facury de Souza, Elsa Angelini,
- Abstract summary: We propose Pix2Rep, a self-supervised learning (SSL) approach for few-shot segmentation.
It reduces the manual annotation burden by learning powerful pixel-level representations directly from unlabeled images.
Results show improved performance compared to existing semi- and self-supervised approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has revolutionized medical image segmentation, but it relies heavily on high-quality annotations. The time, cost and expertise required to label images at the pixel-level for each new task has slowed down widespread adoption of the paradigm. We propose Pix2Rep, a self-supervised learning (SSL) approach for few-shot segmentation, that reduces the manual annotation burden by learning powerful pixel-level representations directly from unlabeled images. Pix2Rep is a novel pixel-level loss and pre-training paradigm for contrastive SSL on whole images. It is applied to generic encoder-decoder deep learning backbones (e.g., U-Net). Whereas most SSL methods enforce invariance of the learned image-level representations under intensity and spatial image augmentations, Pix2Rep enforces equivariance of the pixel-level representations. We demonstrate the framework on a task of cardiac MRI segmentation. Results show improved performance compared to existing semi- and self-supervised approaches; and a 5-fold reduction in the annotation burden for equivalent performance versus a fully supervised U-Net baseline. This includes a 30% (resp. 31%) DICE improvement for one-shot segmentation under linear-probing (resp. fine-tuning). Finally, we also integrate the novel Pix2Rep concept with the Barlow Twins non-contrastive SSL, which leads to even better segmentation performance.
Related papers
- Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
We present a weakly supervised learning algorithm to train semantic segmentation algorithms.
Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation.
arXiv Detail & Related papers (2023-09-11T14:32:04Z) - IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised
Medical Image Segmentation [3.6748639131154315]
We extend the concept of metric learning to the segmentation task.
We propose a simple convolutional projection head for obtaining dense pixel-level features.
A bidirectional regularization mechanism involving two-stream regularization training is devised for the downstream task.
arXiv Detail & Related papers (2022-10-26T23:11:02Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
We propose a method to enable the end-to-end pre-training for image segmentation models based on classification datasets.
The proposed method leverages a weighted segmentation learning procedure to pre-train the segmentation network en masse.
Experiment results show that, with ImageNet accompanied by PSSL as the source dataset, the proposed end-to-end pre-training strategy successfully boosts the performance of various segmentation models.
arXiv Detail & Related papers (2022-07-04T13:02:32Z) - Self Supervised Learning for Few Shot Hyperspectral Image Classification [57.2348804884321]
We propose to leverage Self Supervised Learning (SSL) for HSI classification.
We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels.
arXiv Detail & Related papers (2022-06-24T07:21:53Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - From Explanations to Segmentation: Using Explainable AI for Image
Segmentation [1.8581514902689347]
We build upon the advances of the Explainable AI (XAI) community and extract a pixel-wise binary segmentation.
We show that we achieve similar results compared to an established U-Net segmentation architecture.
The proposed method can be trained in a weakly supervised fashion, as the training samples must be only labeled on image-level.
arXiv Detail & Related papers (2022-02-01T10:26:10Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
We propose a mixed supervision learning framework for super high-resolution images.
During the patch training stage, this framework can make use of coarse image-level labels to refine self-supervised learning.
A comprehensive strategy is proposed to suppress pixel-level false positives and false negatives.
arXiv Detail & Related papers (2021-07-02T09:46:06Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Vessel-CAPTCHA: an efficient learning framework for vessel annotation
and segmentation [4.234945298751737]
The use of deep learning techniques for 3D brain vessel image segmentation has not been as widespread as for the segmentation of other organs and tissues.
We propose a novel annotation-efficient deep learning vessel segmentation framework.
The framework achieves state-of-the-art accuracy, while reducing the annotation time by up to 80% with respect to learning-based segmentation methods.
arXiv Detail & Related papers (2021-01-22T20:29:23Z) - Few-Shot Semantic Segmentation Augmented with Image-Level Weak
Annotations [23.02986307143718]
Recent progress in fewshot semantic segmentation tackles the issue by only a few pixel-level annotated examples.
Our key idea is to learn a better prototype representation of the class by fusing the knowledge from the image-level labeled data.
We propose a new framework, called PAIA, to learn the class prototype representation in a metric space by integrating image-level annotations.
arXiv Detail & Related papers (2020-07-03T04:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.