Mutual information chain rules for security proofs robust against device imperfections
- URL: http://arxiv.org/abs/2407.20396v2
- Date: Sat, 12 Oct 2024 22:05:45 GMT
- Title: Mutual information chain rules for security proofs robust against device imperfections
- Authors: Amir Arqand, Tony Metger, Ernest Y. -Z. Tan,
- Abstract summary: We analyze quantum cryptography with imperfect devices that leak additional information to an adversary.
We show that these results can be used to handle some device imperfections in a variety of device-dependent and device-independent protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we derive a number of chain rules for mutual information quantities, suitable for analyzing quantum cryptography with imperfect devices that leak additional information to an adversary. First, we derive a chain rule between smooth min-entropy and smooth max-information, which improves over previous chain rules for characterizing one-shot information leakage caused by an additional conditioning register. Second, we derive an ''information bounding theorem'' that bounds the R\'enyi mutual information of a state produced by a sequence of channels, in terms of the R\'enyi mutual information of the individual channel outputs, similar to entropy accumulation theorems. In particular, this yields simple bounds on the smooth max-information in the preceding chain rule. Third, we derive chain rules between R\'enyi entropies and R\'enyi mutual information, which can be used to modify the entropy accumulation theorem to accommodate leakage registers sent to the adversary in each round of a protocol. We show that these results can be used to handle some device imperfections in a variety of device-dependent and device-independent protocols, such as randomness generation and quantum key distribution.
Related papers
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Universal Spreading of Conditional Mutual Information in Noisy Random Circuits [1.6437645274005803]
We study the evolution of conditional mutual information in generic open quantum systems.
We find that noisy random circuits with an error rate $p$ exhibit superlinear propagation of conditional mutual information.
arXiv Detail & Related papers (2024-02-28T18:31:14Z) - Chain rules for one-shot entropic quantities via operational methods [0.0]
We introduce a new operational technique for deriving chain rules for general information theoretic quantities.
Our framework considers a simple information transmission task and obtains lower and upper bounds for it.
As a demonstration of this technique, we derive chain rules for the smooth max mutual information and the smooth-Hypothesis testing mutual information.
arXiv Detail & Related papers (2023-05-15T10:29:42Z) - Generalised entropy accumulation [14.595665255353206]
This is a generalisation of the entropy accumulation theorem (EAT)
Due to its more general model of side-information, our generalised EAT can be applied more easily and to a broader range of cryptographic protocols.
As examples, we give the first multi-round security proof for blind expansion and a simplified analysis of the E91 QKD protocol.
arXiv Detail & Related papers (2022-03-09T19:00:05Z) - Chained Generalisation Bounds [26.043342234937747]
We derive upper bounds for the expected generalisation error of supervised learning algorithms by means of the chaining technique.
We establish a duality between generalisation bounds based on the regularity of the loss function, and their chained counterparts.
arXiv Detail & Related papers (2022-03-02T09:34:36Z) - R\'enyi divergence inequalities via interpolation, with applications to
generalised entropic uncertainty relations [91.3755431537592]
We investigate quantum R'enyi entropic quantities, specifically those derived from'sandwiched' divergence.
We present R'enyi mutual information decomposition rules, a new approach to the R'enyi conditional entropy tripartite chain rules and a more general bipartite comparison.
arXiv Detail & Related papers (2021-06-19T04:06:23Z) - Shannon theory for quantum systems and beyond: information compression
for fermions [68.8204255655161]
We show that entanglement fidelity in the fermionic case is capable of evaluating the preservation of correlations.
We introduce a fermionic version of the source coding theorem showing that, as in the quantum case, the von Neumann entropy is the minimal rate for which a fermionic compression scheme exists.
arXiv Detail & Related papers (2021-06-09T10:19:18Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Deep Archimedean Copulas [98.96141706464425]
ACNet is a novel differentiable neural network architecture that enforces structural properties.
We show that ACNet is able to both approximate common Archimedean Copulas and generate new copulas which may provide better fits to data.
arXiv Detail & Related papers (2020-12-05T22:58:37Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - From Information Theory Puzzles in Deletion Channels to Deniability in
Quantum Cryptography [0.0]
We first conjecture on the basis of experimental data that the entropy of the posterior is minimized by the constant strings.
We then establish a connection between covert communication and deniability to propose DC-QKE.
We present an efficient coercion-resistant and quantum-secure voting scheme, based on fully homomorphic encryption.
arXiv Detail & Related papers (2020-03-25T22:20:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.