Graphite: A Graph-based Extreme Multi-Label Short Text Classifier for Keyphrase Recommendation
- URL: http://arxiv.org/abs/2407.20462v1
- Date: Mon, 29 Jul 2024 23:41:26 GMT
- Title: Graphite: A Graph-based Extreme Multi-Label Short Text Classifier for Keyphrase Recommendation
- Authors: Ashirbad Mishra, Soumik Dey, Jinyu Zhao, Marshall Wu, Binbin Li, Kamesh Madduri,
- Abstract summary: Keyphrase Recommendation is a pivotal problem in advertising and e-commerce.
Traditional neural network models are either infeasible or have slower inference due to large label spaces.
We present, a graph-based model that provides real-time keyphrase recommendations that are on par with standard text classification models.
- Score: 3.4693396519698108
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Keyphrase Recommendation has been a pivotal problem in advertising and e-commerce where advertisers/sellers are recommended keyphrases (search queries) to bid on to increase their sales. It is a challenging task due to the plethora of items shown on online platforms and various possible queries that users search while showing varying interest in the displayed items. Moreover, query/keyphrase recommendations need to be made in real-time and in a resource-constrained environment. This problem can be framed as an Extreme Multi-label (XML) Short text classification by tagging the input text with keywords as labels. Traditional neural network models are either infeasible or have slower inference latency due to large label spaces. We present Graphite, a graph-based classifier model that provides real-time keyphrase recommendations that are on par with standard text classification models. Furthermore, it doesn't utilize GPU resources, which can be limited in production environments. Due to its lightweight nature and smaller footprint, it can train on very large datasets, where state-of-the-art XML models fail due to extreme resource requirements. Graphite is deterministic, transparent, and intrinsically more interpretable than neural network-based models. We present a comprehensive analysis of our model's performance across forty categories spanning eBay's English-speaking sites.
Related papers
- GraphEx: A Graph-based Extraction Method for Advertiser Keyphrase Recommendation [3.167259972777881]
GraphEx is an innovative graph-based approach that recommends keyphrases to sellers using extraction of token permutations from item titles.
It supports near real-time inferencing in resource-constrained production environments and scales effectively for billions of items.
arXiv Detail & Related papers (2024-09-05T00:25:37Z) - Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets [51.74296438621836]
We introduce Scribbles for All, a label and training data generation algorithm for semantic segmentation trained on scribble labels.
The main limitation of scribbles as source for weak supervision is the lack of challenging datasets for scribble segmentation.
Scribbles for All provides scribble labels for several popular segmentation datasets and provides an algorithm to automatically generate scribble labels for any dataset with dense annotations.
arXiv Detail & Related papers (2024-08-22T15:29:08Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - Hierarchical Knowledge Distillation on Text Graph for Data-limited
Attribute Inference [5.618638372635474]
We develop a text-graph-based few-shot learning model for attribute inferences on social media text data.
Our model first constructs and refines a text graph using manifold learning and message passing.
To further use cross-domain texts and unlabeled texts to improve few-shot performance, a hierarchical knowledge distillation is devised over text graph.
arXiv Detail & Related papers (2024-01-10T05:50:34Z) - GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language
Models [33.56759621666477]
We present a benchmark dataset for evaluating the integration of graph knowledge into language models.
The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation.
We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
arXiv Detail & Related papers (2023-10-12T16:46:58Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
We propose Contrastive Graph-Text pretraining (ConGraT) for jointly learning separate representations of texts and nodes in a text-attributed graph (TAG)
Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP.
Experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling.
arXiv Detail & Related papers (2023-05-23T17:53:30Z) - Visually-Prompted Language Model for Fine-Grained Scene Graph Generation
in an Open World [67.03968403301143]
Scene Graph Generation (SGG) aims to extract subject, predicate, object> relationships in images for vision understanding.
Existing re-balancing strategies try to handle it via prior rules but are still confined to pre-defined conditions.
We propose a Cross-modal prediCate boosting (CaCao) framework, where a visually-prompted language model is learned to generate diverse fine-grained predicates.
arXiv Detail & Related papers (2023-03-23T13:06:38Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
Graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task.
Despite the success, their performance could be largely jeopardized in practice since they are unable to capture high-order interaction between words.
We propose a principled model -- hypergraph attention networks (HyperGAT) which can obtain more expressive power with less computational consumption for text representation learning.
arXiv Detail & Related papers (2020-11-01T00:21:59Z) - Item Tagging for Information Retrieval: A Tripartite Graph Neural
Network based Approach [44.75731013014112]
We propose to formulate item tagging as a link prediction problem between item nodes and tag nodes.
This formulation results in a TagGNN model that utilizes heterogeneous graph neural networks with multiple types of nodes and edges.
Experimental results on both open and industrial datasets show that our TagGNN approach outperforms the state-of-the-art multi-label classification approaches.
arXiv Detail & Related papers (2020-08-26T13:58:19Z) - Comprehensive Information Integration Modeling Framework for Video
Titling [124.11296128308396]
We integrate comprehensive sources of information, including the content of consumer-generated videos, the narrative comment sentences supplied by consumers, and the product attributes, in an end-to-end modeling framework.
To tackle this issue, the proposed method consists of two processes, i.e., granular-level interaction modeling and abstraction-level story-line summarization.
We collect a large-scale dataset accordingly from real-world data in Taobao, a world-leading e-commerce platform.
arXiv Detail & Related papers (2020-06-24T10:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.