Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets
- URL: http://arxiv.org/abs/2408.12489v1
- Date: Thu, 22 Aug 2024 15:29:08 GMT
- Title: Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets
- Authors: Wolfgang Boettcher, Lukas Hoyer, Ozan Unal, Jan Eric Lenssen, Bernt Schiele,
- Abstract summary: We introduce Scribbles for All, a label and training data generation algorithm for semantic segmentation trained on scribble labels.
The main limitation of scribbles as source for weak supervision is the lack of challenging datasets for scribble segmentation.
Scribbles for All provides scribble labels for several popular segmentation datasets and provides an algorithm to automatically generate scribble labels for any dataset with dense annotations.
- Score: 51.74296438621836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce Scribbles for All, a label and training data generation algorithm for semantic segmentation trained on scribble labels. Training or fine-tuning semantic segmentation models with weak supervision has become an important topic recently and was subject to significant advances in model quality. In this setting, scribbles are a promising label type to achieve high quality segmentation results while requiring a much lower annotation effort than usual pixel-wise dense semantic segmentation annotations. The main limitation of scribbles as source for weak supervision is the lack of challenging datasets for scribble segmentation, which hinders the development of novel methods and conclusive evaluations. To overcome this limitation, Scribbles for All provides scribble labels for several popular segmentation datasets and provides an algorithm to automatically generate scribble labels for any dataset with dense annotations, paving the way for new insights and model advancements in the field of weakly supervised segmentation. In addition to providing datasets and algorithm, we evaluate state-of-the-art segmentation models on our datasets and show that models trained with our synthetic labels perform competitively with respect to models trained on manual labels. Thus, our datasets enable state-of-the-art research into methods for scribble-labeled semantic segmentation. The datasets, scribble generation algorithm, and baselines are publicly available at https://github.com/wbkit/Scribbles4All
Related papers
- Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised
Semantic Segmentation with Its Class Label [16.745019028033518]
We propose a class-driven scribble promotion network, which utilizes both scribble annotations and pseudo-labels informed by image-level classes and global semantics for supervision.
Experiments on the ScribbleSup dataset with different qualities of scribble annotations outperform all the previous methods, demonstrating the superiority and robustness of our method.
arXiv Detail & Related papers (2024-02-27T14:51:56Z) - A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation [28.907274978550493]
Unsupervised semantic segmentation aims to categorize each pixel in an image into a corresponding class without the use of annotated data.
We propose a lightweight clustering framework for unsupervised semantic segmentation.
Our framework achieves state-of-the-art results on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-11-30T15:33:42Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
We propose an approach to semantic segmentation that achieves state-of-the-art supervised performance when applied in a zero-shot setting.
This is achieved by replacing each class label with a vector-valued embedding of a short paragraph that describes the class.
The resulting merged semantic segmentation dataset of over 2 Million images enables training a model that achieves performance equal to that of state-of-the-art supervised methods on 7 benchmark datasets.
arXiv Detail & Related papers (2022-02-04T07:19:09Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - Weakly-Supervised Salient Object Detection via Scribble Annotations [54.40518383782725]
We propose a weakly-supervised salient object detection model to learn saliency from scribble labels.
We present a new metric, termed saliency structure measure, to measure the structure alignment of the predicted saliency maps.
Our method not only outperforms existing weakly-supervised/unsupervised methods, but also is on par with several fully-supervised state-of-the-art models.
arXiv Detail & Related papers (2020-03-17T12:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.