論文の概要: Automated Physical Design Watermarking Leveraging Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2407.20544v1
- Date: Tue, 30 Jul 2024 04:56:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:19:06.911546
- Title: Automated Physical Design Watermarking Leveraging Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを活用した物理設計透かしの自動化
- Authors: Ruisi Zhang, Rachel Selina Rajarathnam, David Z. Pan, Farinaz Koushanfar,
- Abstract要約: AutoMarksは自動化および転送可能な透かしフレームワークである。
グラフニューラルネットワークを使用して、配置段階での透かし検索オーバーヘッドを削減する。
- 参考スコア(独自算出の注目度): 19.359996725500512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents AutoMarks, an automated and transferable watermarking framework that leverages graph neural networks to reduce the watermark search overheads during the placement stage. AutoMarks's novel automated watermark search is accomplished by (i) constructing novel graph and node features with physical, semantic, and design constraint-aware representation; (ii) designing a data-efficient sampling strategy for watermarking fidelity label collection; and (iii) leveraging a graph neural network to learn the connectivity between cells and predict the watermarking fidelity on unseen layouts. Extensive evaluations on ISPD'15 and ISPD'19 benchmarks demonstrate that our proposed automated methodology: (i) is capable of finding quality-preserving watermarks in a short time; and (ii) is transferable across various designs, i.e., AutoMarks trained on one layout is generalizable to other benchmark circuits. AutoMarks is also resilient against potential watermark removal and forging attacks
- Abstract(参考訳): 本稿では,グラフニューラルネットワークを利用した自動および転送可能な透かしフレームワークであるAutoMarksについて述べる。
AutoMarksの新しい自動透かし検索が実現
一 物理的・意味的・設計制約対応表現による新規なグラフ及びノードの特徴の構築
二 透かしファイルラベル収集のためのデータ効率のよいサンプリング戦略を設計すること。
三 グラフニューラルネットワークを利用して、セル間の接続を学習し、目に見えないレイアウトで透かしの忠実さを予測すること。
ISPD'15とISPD'19ベンチマークの大規模な評価は、我々の自動手法が示されていることを示している。
(i)短時間で品質を保たれる透かしを見つけることができ、
例えば、あるレイアウトで訓練されたAutoMarksは、他のベンチマーク回路に一般化可能である。
AutoMarksは、透かしの除去や偽造攻撃にも耐性がある
関連論文リスト
- Beyond Dataset Watermarking: Model-Level Copyright Protection for Code Summarization Models [37.817691840557984]
CSMは、許可されていないユーザによる搾取のリスクに直面します。
伝統的な透かし法はトリガーと透かしの特徴を別々に設計する必要がある。
モデルレベルの新しい電子透かし埋め込み方式であるModMarkを提案する。
論文 参考訳(メタデータ) (2024-10-18T00:48:00Z) - De-mark: Watermark Removal in Large Language Models [59.00698153097887]
我々は、n-gramベースの透かしを効果的に除去するために設計された高度なフレームワークであるDe-markを紹介する。
提案手法は,透かしの強度を評価するために,ランダム選択探索と呼ばれる新しいクエリ手法を利用する。
論文 参考訳(メタデータ) (2024-10-17T17:42:10Z) - Towards Secure and Usable 3D Assets: A Novel Framework for Automatic Visible Watermarking [11.176240030501184]
3Dモデル(特にAI生成モデル)は、エンターテイメントなどさまざまな業界で最近急増している。
我々は、透かしの品質と資産性という2つの競合する側面から、3D視覚的な透かしを自動化するための新しいタスクを厳格に定義する。
そこで本稿では,任意の3D資産上に配置する適切な位置,向き,個数を自動的に決定する透かしを埋め込む手法を提案する。
論文 参考訳(メタデータ) (2024-08-31T00:52:29Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
本稿では,人間の直感的な評価を目的とした最初のDNN透かし手法であるClearMarkを紹介する。
ClearMarkは目に見える透かしを埋め込んで、厳格な値閾値なしで人間の意思決定を可能にする。
8,544ビットの透かし容量は、現存する最強の作品に匹敵する。
論文 参考訳(メタデータ) (2023-10-25T08:16:55Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - Automatic Localization and Detection Applicable to Robust Image
Watermarking Resisting against Camera Shooting [6.671754225593089]
提案方式は完全に自動化されており、アプリケーションのシナリオに最適である。
埋め込み透かしは、異なるシナリオでカメラ撮影画像から自動的に確実に抽出することができる。
論文 参考訳(メタデータ) (2023-04-27T05:06:45Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
本稿では,透かし除去攻撃に対して効果的に防御できる新しいDNN透かし法を提案する。
私たちの重要な洞察は、透かしとモデル機能の結合を強化することです。
その結果,アグレッシブ・ウォーターマーク除去攻撃による100%透かし認証の成功率を示した。
論文 参考訳(メタデータ) (2023-02-08T05:55:16Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。