Be aware of overfitting by hyperparameter optimization!
- URL: http://arxiv.org/abs/2407.20786v2
- Date: Sun, 24 Nov 2024 07:15:24 GMT
- Title: Be aware of overfitting by hyperparameter optimization!
- Authors: Igor V. Tetko, Ruud van Deursen, Guillaume Godin,
- Abstract summary: We show that hyperparameter optimization did not always result in better models, possibly due to overfitting when using the same statistical measures.
We also extended the previous analysis by adding a representation learning method based on Natural Language Processing of smiles called Transformer CNN.
We show that across all analyzed sets using exactly the same protocol, Transformer CNN provided better results than graph-based methods for 26 out of 28 pairwise comparisons.
- Score: 0.0
- License:
- Abstract: Hyperparameter optimization is very frequently employed in machine learning. However, an optimization of a large space of parameters could result in overfitting of models. In recent studies on solubility prediction the authors collected seven thermodynamic and kinetic solubility datasets from different data sources. They used state-of-the-art graph-based methods and compared models developed for each dataset using different data cleaning protocols and hyperparameter optimization. In our study we showed that hyperparameter optimization did not always result in better models, possibly due to overfitting when using the same statistical measures. Similar results could be calculated using pre-set hyperparameters, reducing the computational effort by around 10,000 times. We also extended the previous analysis by adding a representation learning method based on Natural Language Processing of smiles called Transformer CNN. We show that across all analyzed sets using exactly the same protocol, Transformer CNN provided better results than graph-based methods for 26 out of 28 pairwise comparisons by using only a tiny fraction of time as compared to other methods. Last but not least we stressed the importance of comparing calculation results using exactly the same statistical measures.
Related papers
- Improve Machine Learning carbon footprint using Parquet dataset format and Mixed Precision training for regression models -- Part II [0.0]
This dissertation compared the power consumption using the Comma-Separated-Values (CSV) and dataset format with the default floating point (32bit) and Nvidia mixed precision (16bit and 32bit) while training a regression ML model.
arXiv Detail & Related papers (2024-09-17T10:53:03Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How [62.467716468917224]
We propose a methodology that jointly searches for the optimal pretrained model and the hyperparameters for finetuning it.
Our method transfers knowledge about the performance of many pretrained models on a series of datasets.
We empirically demonstrate that our resulting approach can quickly select an accurate pretrained model for a new dataset.
arXiv Detail & Related papers (2023-06-06T16:15:26Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Optimally Weighted Ensembles of Regression Models: Exact Weight
Optimization and Applications [0.0]
We show that combining different regression models can yield better results than selecting a single ('best') regression model.
We outline an efficient method that obtains optimally weighted linear combination from a heterogeneous set of regression models.
arXiv Detail & Related papers (2022-06-22T09:11:14Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Accounting for Variance in Machine Learning Benchmarks [37.922783300635864]
One machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the learning pipeline over sources of variation.
This is prohibitively expensive, and corners are cut to reach conclusions.
We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyper parameter choice impact markedly the results.
We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost.
arXiv Detail & Related papers (2021-03-01T22:39:49Z) - Gaussian Process Boosting [13.162429430481982]
We introduce a novel way to combine boosting with Gaussian process and mixed effects models.
We obtain increased prediction accuracy compared to existing approaches on simulated and real-world data sets.
arXiv Detail & Related papers (2020-04-06T13:19:54Z) - Weighted Random Search for Hyperparameter Optimization [0.0]
We introduce an improved version of Random Search (RS), used here for hyper parameter optimization of machine learning algorithms.
We generate new values for each hyper parameter with a probability of change, unlike the standard RS.
Within the same computational budget, our method yields better results than the standard RS.
arXiv Detail & Related papers (2020-04-03T15:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.