On multivariate polynomials achievable with quantum signal processing
- URL: http://arxiv.org/abs/2407.20823v1
- Date: Tue, 30 Jul 2024 13:40:11 GMT
- Title: On multivariate polynomials achievable with quantum signal processing
- Authors: Lorenzo Laneve, Stefan Wolf,
- Abstract summary: Quantum signal processing (QSP) is a framework which was proven to unify and simplify a large number of known quantum algorithms.
This work uses a slightly different formalism than what is found in the literature, and uses it to find simpler necessary conditions for decomposability.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum signal processing (QSP) is a framework which was proven to unify and simplify a large number of known quantum algorithms, as well as discovering new ones. QSP allows one to transform a signal embedded in a given unitary using polynomials. Characterizing which polynomials can be achieved with QSP protocols is an important part of the power of this technique, and while such a characterization is well-understood in the case of univariate signals, it is unclear which multivariate polynomials can be constructed when the signal is a vector, rather than a scalar. This work uses a slightly different formalism than what is found in the literature, and uses it to find simpler necessary conditions for decomposability, as well as a sufficient condition - the first, to the best of our knowledge, proven for a (generally inhomogeneous) multivariate polynomial in the context of quantum signal processing.
Related papers
- Polynomial time constructive decision algorithm for multivariable quantum signal processing [0.7332146059733189]
Multivariable quantum signal processing (M-QSP) is proposed.
M-QSP interleaves signal operators corresponding to each variable with signal processing operators.
A classical algorithm is proposed to determine whether a given pair of Laurents can be implemented by M-QSP.
arXiv Detail & Related papers (2024-10-03T09:30:35Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - On variants of multivariate quantum signal processing and their
characterizations [0.0]
Quantum signal processing (QSP) is a highly successful algorithmic primitive in quantum computing.
We show that Haah's characterization of general QSP can be extended to homogeneous bivariable (commuting) quantum signal processing.
We also show a similar result for an alternative inhomogeneous variant when the degree in one of the variables is at most 1, but construct a counterexample where both variables have degree 2.
arXiv Detail & Related papers (2023-12-14T16:06:58Z) - Quantum signal processing over SU(N) [0.0]
Quantum signal processing (QSP) and the quantum singular value transformation (QSVT) are pivotal tools for simplifying the development of quantum algorithms.
These techniques leverage transformations on the eigenvalues or singular values of block-encoded matrices, achieved with the use of just one control qubit.
In this work, we extend the original QSP ansatz by introducing multiple control qubits.
arXiv Detail & Related papers (2023-11-07T12:43:47Z) - Modular quantum signal processing in many variables [0.0]
We show that modular multi-input-based QSP-based superoperators can be snapped together with LEGO-like ease at the level of the functions they apply.
We also provide a Python package for assembling gadgets and compiling them to circuits.
arXiv Detail & Related papers (2023-09-28T17:58:51Z) - An Exponential Separation Between Quantum Query Complexity and the
Polynomial Degree [79.43134049617873]
In this paper, we demonstrate an exponential separation between exact degree and approximate quantum query for a partial function.
For an alphabet size, we have a constant versus separation complexity.
arXiv Detail & Related papers (2023-01-22T22:08:28Z) - Multivariable quantum signal processing (M-QSP): prophecies of the
two-headed oracle [0.0]
Recent work shows that quantum signal processing (QSP) and its multi-qubit lifted version, quantum singular value transformation (QSVT)
QSVT transforms and improve the presentation of most quantum algorithms.
arXiv Detail & Related papers (2022-05-12T17:58:59Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.