Polynomial time constructive decision algorithm for multivariable quantum signal processing
- URL: http://arxiv.org/abs/2410.02332v1
- Date: Thu, 3 Oct 2024 09:30:35 GMT
- Title: Polynomial time constructive decision algorithm for multivariable quantum signal processing
- Authors: Yuki Ito, Hitomi Mori, Kazuki Sakamoto, Keisuke Fujii,
- Abstract summary: Multivariable quantum signal processing (M-QSP) is proposed.
M-QSP interleaves signal operators corresponding to each variable with signal processing operators.
A classical algorithm is proposed to determine whether a given pair of Laurents can be implemented by M-QSP.
- Score: 0.7332146059733189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum signal processing (QSP) and quantum singular value transformation (QSVT) have provided a unified framework for understanding many quantum algorithms, including factorization, matrix inversion, and Hamiltonian simulation. As a multivariable version of QSP, multivariable quantum signal processing (M-QSP) is proposed. M-QSP interleaves signal operators corresponding to each variable with signal processing operators, which provides an efficient means to perform multivariable polynomial transformations. However, the necessary and sufficient condition for what types of polynomials can be constructed by M-QSP is unknown. In this paper, we propose a classical algorithm to determine whether a given pair of multivariable Laurent polynomials can be implemented by M-QSP, which returns True or False. As one of the most important properties of this algorithm, it returning True is the necessary and sufficient condition. The proposed classical algorithm runs in polynomial time in the number of variables and signal operators. Our algorithm also provides a constructive method to select the necessary parameters for implementing M-QSP. These findings offer valuable insights for identifying practical applications of M-QSP.
Related papers
- On multivariate polynomials achievable with quantum signal processing [0.9208007322096533]
Quantum signal processing (QSP) is a framework which was proven to unify and simplify a large number of known quantum algorithms.
This work uses a slightly different formalism than what is found in the literature, and uses it to find simpler necessary conditions for decomposability.
arXiv Detail & Related papers (2024-07-30T13:40:11Z) - Quantum Signal Processing and Quantum Singular Value Transformation on $U(N)$ [8.264300525515097]
Quantum signal processing and quantum value transformation are powerful tools to implement transformations of block-encoded matrices on quantum computers.
We propose a framework which realizes multiples simultaneously from a block-encoded input.
We also give an algorithm to construct the quantum circuit that gives the desired transformation.
arXiv Detail & Related papers (2024-07-19T14:15:20Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - On variants of multivariate quantum signal processing and their
characterizations [0.0]
Quantum signal processing (QSP) is a highly successful algorithmic primitive in quantum computing.
We show that Haah's characterization of general QSP can be extended to homogeneous bivariable (commuting) quantum signal processing.
We also show a similar result for an alternative inhomogeneous variant when the degree in one of the variables is at most 1, but construct a counterexample where both variables have degree 2.
arXiv Detail & Related papers (2023-12-14T16:06:58Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Multivariable quantum signal processing (M-QSP): prophecies of the
two-headed oracle [0.0]
Recent work shows that quantum signal processing (QSP) and its multi-qubit lifted version, quantum singular value transformation (QSVT)
QSVT transforms and improve the presentation of most quantum algorithms.
arXiv Detail & Related papers (2022-05-12T17:58:59Z) - Variational Quantum Computation of Molecular Linear Response Properties
on a Superconducting Quantum Processor [20.69554086981598]
We introduce a pragmatic variational quantum response (VQR) algorithm for response properties, which circumvents the need for deep quantum circuits.
We report the first simulation of linear response properties of molecules including dynamic polarizabilities and absorption spectra on a superconducting quantum processor.
arXiv Detail & Related papers (2022-01-07T12:24:03Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Logical Abstractions for Noisy Variational Quantum Algorithm Simulation [25.515765956985188]
Existing quantum circuit simulators do not address the common traits of variational algorithms.
We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms.
arXiv Detail & Related papers (2021-03-31T17:20:13Z) - Efficient phase-factor evaluation in quantum signal processing [1.3614427997190908]
Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrixs on quantum computers.
There is so far no classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits.
We present here an optimization based method that can accurately compute the phase factors using standard double precision arithmetic operations.
arXiv Detail & Related papers (2020-02-26T17:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.