Local analysis of a single impurity on a graphene Josephson Junction
- URL: http://arxiv.org/abs/2407.20940v1
- Date: Tue, 30 Jul 2024 16:21:34 GMT
- Title: Local analysis of a single impurity on a graphene Josephson Junction
- Authors: Ignazio Vacante, Francesco M. D. Pellegrino, Giuseppe Falci, Elisabetta Paladino,
- Abstract summary: In this work, we investigate the local effects of a single short-range impurity on the electron system of a short ballistic graphene Josephson Junction.
Within the Dirac-Bogoliubov-De Gennes approach, we analyze the local density states, whose subgap energy dependence enables us to distinguish between elastic and inelastic scattering processes.
We observe that the spatial dependence of the local density of states is a sensitive probe of the microscopic processes resulting in subgap impurity-induced bound states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we investigate the local effects of a single short-range impurity on the electron system of a short ballistic graphene Josephson Junction. Within the Dirac-Bogoliubov-De Gennes approach, we systematically analyze the local density states, whose subgap energy dependence enables us to distinguish between elastic and inelastic scattering processes and identify the magnetic nature of the impurity. Furthermore, we observe that the spatial dependence of the local density of states is a sensitive probe of the microscopic processes resulting in subgap impurity-induced bound states. The Fourier analysis evidences the wavevectors related to the momenta of the high transmissive channels in ballistic graphene.
Related papers
- Static impurity in a mesoscopic system of SU($N$) fermionic matter-waves [0.0]
We show that the impurity opens a gap in the energy spectrum selectively, constrained by the total effective spin and interaction.
Our findings hold significance for the fundamental understanding of the localized impurity problem and its potential applications for sensing and interferometry in quantum technology.
arXiv Detail & Related papers (2024-11-21T19:25:14Z) - Polaron formation in insulators and the key role of hole scattering processes: Band insulators, charge density waves and Mott transition [0.0]
A mobile impurity immersed in a non-interacting Fermi sea is dressed by the gapless particle-hole excitations of the fermionic medium.
The polaron spectral function is shown to exhibit striking signatures of the underlying fermionic background.
We find that the ladder approximation is inaccurate in these band systems, due to the fact that the particle and hole scattering phase spaces are comparable.
arXiv Detail & Related papers (2024-08-02T16:36:11Z) - Imaging Coulomb interactions and migrating Dirac cones in twisted graphene by local quantum oscillations [0.23191656838250044]
We use a nanoscale scanning superconducting quantum interference device to image the local thermodynamic quantum oscillations in alternating-twist trilayer graphene at magnetic fields as low as 56 mT.
We find that the charging self-energy due to occupied electronic states, is critical in explaining the high carrier density physics.
At half-filling of the conduction flat band, we observe a Stoner-like symmetry breaking, suggesting that it is the most robust mechanism in the hierarchy of phase transitions.
arXiv Detail & Related papers (2024-07-15T12:47:22Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Thermalization of dilute impurities in one dimensional spin chains [0.0]
We analyze a crossover between ergodic and non-ergodic regimes in a spin chain with a dilute density of impurities.
We propose a mechanism for the delocalization of these impurities in the thermodynamic limit.
arXiv Detail & Related papers (2021-05-19T18:23:36Z) - Noninteracting fermionic systems with localized losses: Exact results in
the hydrodynamic limit [0.0]
We investigate the interplay between unitary dynamics after a quantum quench and localized dissipation in a noninteracting fermionic chain.
In particular, we consider the effect of gain and loss processes, for which fermions are added and removed incoherently.
For strong dissipation the coherent dynamics of the system is arrested, which is a manifestation of the celebrated quantum Zeno effect.
arXiv Detail & Related papers (2021-03-09T19:16:31Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.