An Effective Dynamic Gradient Calibration Method for Continual Learning
- URL: http://arxiv.org/abs/2407.20956v1
- Date: Tue, 30 Jul 2024 16:30:09 GMT
- Title: An Effective Dynamic Gradient Calibration Method for Continual Learning
- Authors: Weichen Lin, Jiaxiang Chen, Ruomin Huang, Hu Ding,
- Abstract summary: Continual learning (CL) is a fundamental topic in machine learning, where the goal is to train a model with continuously incoming data and tasks.
Due to the memory limit, we cannot store all the historical data, and therefore confront the catastrophic forgetting'' problem.
We develop an effective algorithm to calibrate the gradient in each updating step of the model.
- Score: 11.555822066922508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning (CL) is a fundamental topic in machine learning, where the goal is to train a model with continuously incoming data and tasks. Due to the memory limit, we cannot store all the historical data, and therefore confront the ``catastrophic forgetting'' problem, i.e., the performance on the previous tasks can substantially decrease because of the missing information in the latter period. Though a number of elegant methods have been proposed, the catastrophic forgetting phenomenon still cannot be well avoided in practice. In this paper, we study the problem from the gradient perspective, where our aim is to develop an effective algorithm to calibrate the gradient in each updating step of the model; namely, our goal is to guide the model to be updated in the right direction under the situation that a large amount of historical data are unavailable. Our idea is partly inspired by the seminal stochastic variance reduction methods (e.g., SVRG and SAGA) for reducing the variance of gradient estimation in stochastic gradient descent algorithms. Another benefit is that our approach can be used as a general tool, which is able to be incorporated with several existing popular CL methods to achieve better performance. We also conduct a set of experiments on several benchmark datasets to evaluate the performance in practice.
Related papers
- Gradient Descent Efficiency Index [0.0]
This study introduces a new efficiency metric, Ek, designed to quantify the effectiveness of each iteration.
The proposed metric accounts for both the relative change in error and the stability of the loss function across iterations.
Ek has the potential to guide more informed decisions in the selection and tuning of optimization algorithms in machine learning applications.
arXiv Detail & Related papers (2024-10-25T10:22:22Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Hessian Aware Low-Rank Perturbation for Order-Robust Continual Learning [19.850893012601638]
Continual learning aims to learn a series of tasks sequentially without forgetting the knowledge acquired from the previous ones.
We propose the Hessian Aware Low-Rank Perturbation algorithm for continual learning.
arXiv Detail & Related papers (2023-11-26T01:44:01Z) - Class Gradient Projection For Continual Learning [99.105266615448]
Catastrophic forgetting is one of the most critical challenges in Continual Learning (CL)
We propose Class Gradient Projection (CGP), which calculates the gradient subspace from individual classes rather than tasks.
arXiv Detail & Related papers (2023-11-25T02:45:56Z) - Clustering-based Domain-Incremental Learning [4.835091081509403]
Key challenge in continual learning is the so-called "catastrophic forgetting problem"
We propose an online clustering-based approach on a dynamically updated finite pool of samples or gradients.
We demonstrate the effectiveness of the proposed strategy and its promising performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-09-21T13:49:05Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
We introduce Continuous Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field.
Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous.
We show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
arXiv Detail & Related papers (2022-03-02T22:35:58Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.