From Feature Importance to Natural Language Explanations Using LLMs with RAG
- URL: http://arxiv.org/abs/2407.20990v1
- Date: Tue, 30 Jul 2024 17:27:20 GMT
- Title: From Feature Importance to Natural Language Explanations Using LLMs with RAG
- Authors: Sule Tekkesinoglu, Lars Kunze,
- Abstract summary: We introduce traceable question-answering, leveraging an external knowledge repository to inform responses of Large Language Models (LLMs)
This knowledge repository comprises contextual details regarding the model's output, containing high-level features, feature importance, and alternative probabilities.
We integrate four key characteristics - social, causal, selective, and contrastive - drawn from social science research on human explanations into a single-shot prompt, guiding the response generation process.
- Score: 4.204990010424084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning becomes increasingly integral to autonomous decision-making processes involving human interaction, the necessity of comprehending the model's outputs through conversational means increases. Most recently, foundation models are being explored for their potential as post hoc explainers, providing a pathway to elucidate the decision-making mechanisms of predictive models. In this work, we introduce traceable question-answering, leveraging an external knowledge repository to inform the responses of Large Language Models (LLMs) to user queries within a scene understanding task. This knowledge repository comprises contextual details regarding the model's output, containing high-level features, feature importance, and alternative probabilities. We employ subtractive counterfactual reasoning to compute feature importance, a method that entails analysing output variations resulting from decomposing semantic features. Furthermore, to maintain a seamless conversational flow, we integrate four key characteristics - social, causal, selective, and contrastive - drawn from social science research on human explanations into a single-shot prompt, guiding the response generation process. Our evaluation demonstrates that explanations generated by the LLMs encompassed these elements, indicating its potential to bridge the gap between complex model outputs and natural language expressions.
Related papers
- Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
This work introduces a novel Bayesian prompting approach that facilitates training-free Bayesian inference with large language models.
Our results indicate that the model effectively enhances confidence elicitation and text generation quality, demonstrating its potential to improve AI language understanding systems.
arXiv Detail & Related papers (2024-06-08T16:35:31Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
We present a mechanistic interpretation of Transformer-based LMs on arithmetic questions.
This provides insights into how information related to arithmetic is processed by LMs.
arXiv Detail & Related papers (2023-05-24T11:43:47Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - A Closer Look at Reward Decomposition for High-Level Robotic
Explanations [18.019811754800767]
We propose an explainable Q-Map learning framework that combines reward decomposition with abstracted action spaces.
We demonstrate the effectiveness of our framework through quantitative and qualitative analysis of two robotic scenarios.
arXiv Detail & Related papers (2023-04-25T16:01:42Z) - Local Explanation of Dialogue Response Generation [77.68077106724522]
Local explanation of response generation (LERG) is proposed to gain insights into the reasoning process of a generation model.
LERG views the sequence prediction as uncertainty estimation of a human response and then creates explanations by perturbing the input and calculating the certainty change over the human response.
Our results show that our method consistently improves other widely used methods on proposed automatic- and human- evaluation metrics for this new task by 4.4-12.8%.
arXiv Detail & Related papers (2021-06-11T17:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.