Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition
- URL: http://arxiv.org/abs/2407.21033v2
- Date: Wed, 21 Aug 2024 13:09:02 GMT
- Title: Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition
- Authors: Jielong Tang, Zhenxing Wang, Ziyang Gong, Jianxing Yu, Xiangwei Zhu, Jian Yin,
- Abstract summary: Grounded Multimodal Named Entity Recognition (GMNER) is an emerging information extraction (IE) task.
Recent unified methods employing machine reading comprehension or sequence generation-based frameworks show limitations in this difficult task.
We propose a novel unified framework named Multi-grained Query-guided Set Prediction Network (MQSPN) to learn appropriate relationships at intra-entity and inter-entity levels.
- Score: 9.506482334842293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grounded Multimodal Named Entity Recognition (GMNER) is an emerging information extraction (IE) task, aiming to simultaneously extract entity spans, types, and corresponding visual regions of entities from given sentence-image pairs data. Recent unified methods employing machine reading comprehension or sequence generation-based frameworks show limitations in this difficult task. The former, utilizing human-designed queries, struggles to differentiate ambiguous entities, such as Jordan (Person) and off-White x Jordan (Shoes). The latter, following the one-by-one decoding order, suffers from exposure bias issues. We maintain that these works misunderstand the relationships of multimodal entities. To tackle these, we propose a novel unified framework named Multi-grained Query-guided Set Prediction Network (MQSPN) to learn appropriate relationships at intra-entity and inter-entity levels. Specifically, MQSPN consists of a Multi-grained Query Set (MQS) and a Multimodal Set Prediction Network (MSP). MQS explicitly aligns entity regions with entity spans by employing a set of learnable queries to strengthen intra-entity connections. Based on distinct intra-entity modeling, MSP reformulates GMNER as a set prediction, guiding models to establish appropriate inter-entity relationships from a global matching perspective. Additionally, we incorporate a query-guided Fusion Net (QFNet) to work as a glue network between MQS and MSP. Extensive experiments demonstrate that our approach achieves state-of-the-art performances in widely used benchmarks.
Related papers
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - IBMEA: Exploring Variational Information Bottleneck for Multi-modal Entity Alignment [17.570243718626994]
Multi-modal entity alignment (MMEA) aims to identify equivalent entities between multi-modal knowledge graphs (MMKGs)
We devise multi-modal variational encoders to generate modal-specific entity representations as probability distributions.
We also propose four modal-specific information bottleneck regularizers, limiting the misleading clues in refining modal-specific entity representations.
arXiv Detail & Related papers (2024-07-27T17:12:37Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - LLMs as Bridges: Reformulating Grounded Multimodal Named Entity Recognition [28.136662420053568]
Grounded Multimodal Named Entity Recognition (GMNER) is a nascent multimodal task that aims to identify named entities, entity types and their corresponding visual regions.
We propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as a connecting bridge.
arXiv Detail & Related papers (2024-02-15T14:54:33Z) - DRIN: Dynamic Relation Interactive Network for Multimodal Entity Linking [31.15972952813689]
We propose a novel framework called Dynamic Relation Interactive Network (DRIN) for MEL tasks.
DRIN explicitly models four different types of alignment between a mention and entity and builds a dynamic Graph Convolutional Network (GCN) to dynamically select the corresponding alignment relations for different input samples.
Experiments on two datasets show that DRIN outperforms state-of-the-art methods by a large margin, demonstrating the effectiveness of our approach.
arXiv Detail & Related papers (2023-10-09T10:21:42Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Net is a matching-based framework for few-shot fine-grained (FS-FG) action recognition.
It incorporates textitmulti-view encoding, textitmulti-view matching, and textitmulti-view fusion to facilitate embedding encoding, similarity matching, and decision making.
Explainable visualizations and experimental results demonstrate the superiority of M$3$Net in capturing fine-grained action details.
arXiv Detail & Related papers (2023-08-06T09:15:14Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Attribute-Consistent Knowledge Graph Representation Learning for
Multi-Modal Entity Alignment [14.658282035561792]
We propose a novel attribute-consistent knowledge graph representation learning framework for MMEA (ACK-MMEA)
Our approach achieves excellent performance compared to its competitors.
arXiv Detail & Related papers (2023-04-04T06:39:36Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD) aims at discovering salient objects that repeatedly appear in a given query group containing two or more relevant images.
One challenging issue is how to effectively capture co-saliency cues by modeling and exploiting inter-image relationships.
We present an end-to-end collaborative aggregation-and-distribution network (CoADNet) to capture both salient and repetitive visual patterns from multiple images.
arXiv Detail & Related papers (2020-11-10T04:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.