Watermarking Recommender Systems
- URL: http://arxiv.org/abs/2407.21034v3
- Date: Mon, 30 Sep 2024 07:40:15 GMT
- Title: Watermarking Recommender Systems
- Authors: Sixiao Zhang, Cheng Long, Wei Yuan, Hongxu Chen, Hongzhi Yin,
- Abstract summary: We introduce Autoregressive Out-of-distribution Watermarking (AOW), a novel technique tailored specifically for recommender systems.
Our approach entails selecting an initial item and querying it through the oracle model, followed by the selection of subsequent items with small prediction scores.
To assess the efficacy of the watermark, the model is tasked with predicting the subsequent item given a truncated watermark sequence.
- Score: 52.207721219147814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender systems embody significant commercial value and represent crucial intellectual property. However, the integrity of these systems is constantly challenged by malicious actors seeking to steal their underlying models. Safeguarding against such threats is paramount to upholding the rights and interests of the model owner. While model watermarking has emerged as a potent defense mechanism in various domains, its direct application to recommender systems remains unexplored and non-trivial. In this paper, we address this gap by introducing Autoregressive Out-of-distribution Watermarking (AOW), a novel technique tailored specifically for recommender systems. Our approach entails selecting an initial item and querying it through the oracle model, followed by the selection of subsequent items with small prediction scores. This iterative process generates a watermark sequence autoregressively, which is then ingrained into the model's memory through training. To assess the efficacy of the watermark, the model is tasked with predicting the subsequent item given a truncated watermark sequence. Through extensive experimentation and analysis, we demonstrate the superior performance and robust properties of AOW. Notably, our watermarking technique exhibits high-confidence extraction capabilities and maintains effectiveness even in the face of distillation and fine-tuning processes.
Related papers
- Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection [16.36712147596369]
We introduce a novel watermarking framework by embedding the watermark into the whole diffusion process.
Detailed theoretical analysis and experimental validation demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2024-10-29T18:27:10Z) - On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective [39.676548104635096]
Safeguarding the intellectual property of machine learning models has emerged as a pressing concern in AI security.
Model watermarking is a powerful technique for protecting ownership of machine learning models.
We propose a novel model watermarking scheme, In-distribution Watermark Embedding (IWE), to overcome the limitations of existing method.
arXiv Detail & Related papers (2024-09-10T00:55:21Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
Large language models (LLMs) demonstrate general intelligence across a variety of machine learning tasks.
adversaries can still utilize model extraction attacks to steal the model intelligence encoded in model generation.
Watermarking technology offers a promising solution for defending against such attacks by embedding unique identifiers into the model-generated content.
arXiv Detail & Related papers (2024-05-03T06:41:48Z) - Reliable Model Watermarking: Defending Against Theft without Compromising on Evasion [15.086451828825398]
evasion adversaries can readily exploit the shortcuts created by models memorizing watermark samples.
By learning the model to accurately recognize them, unique watermark behaviors are promoted through knowledge injection.
arXiv Detail & Related papers (2024-04-21T03:38:20Z) - Probabilistically Robust Watermarking of Neural Networks [4.332441337407564]
We introduce a novel trigger set-based watermarking approach that demonstrates resilience against functionality stealing attacks.
Our approach does not require additional model training and can be applied to any model architecture.
arXiv Detail & Related papers (2024-01-16T10:32:13Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - A Systematic Review on Model Watermarking for Neural Networks [1.2691047660244335]
This work presents a taxonomy identifying and analyzing different classes of watermarking schemes for machine learning models.
It introduces a unified threat model to allow structured reasoning on and comparison of the effectiveness of watermarking methods.
It systematizes desired security requirements and attacks against ML model watermarking.
arXiv Detail & Related papers (2020-09-25T12:03:02Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.