Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection
- URL: http://arxiv.org/abs/2410.22445v1
- Date: Tue, 29 Oct 2024 18:27:10 GMT
- Title: Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection
- Authors: Jijia Yang, Sen Peng, Xiaohua Jia,
- Abstract summary: We introduce a novel watermarking framework by embedding the watermark into the whole diffusion process.
Detailed theoretical analysis and experimental validation demonstrate the effectiveness of our proposed method.
- Score: 16.36712147596369
- License:
- Abstract: In practical application, the widespread deployment of diffusion models often necessitates substantial investment in training. As diffusion models find increasingly diverse applications, concerns about potential misuse highlight the imperative for robust intellectual property protection. Current protection strategies either employ backdoor-based methods, integrating a watermark task as a simpler training objective with the main model task, or embedding watermarks directly into the final output samples. However, the former approach is fragile compared to existing backdoor defense techniques, while the latter fundamentally alters the expected output. In this work, we introduce a novel watermarking framework by embedding the watermark into the whole diffusion process, and theoretically ensure that our final output samples contain no additional information. Furthermore, we utilize statistical algorithms to verify the watermark from internally generated model samples without necessitating triggers as conditions. Detailed theoretical analysis and experimental validation demonstrate the effectiveness of our proposed method.
Related papers
- Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice [35.319577498993354]
Large Language Models (LLMs) boosts human efficiency but also poses misuse risks.
We propose a novel theoretical framework for watermarking LLMs.
We jointly optimize both the watermarking scheme and detector to maximize detection performance.
arXiv Detail & Related papers (2024-10-03T18:28:10Z) - On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective [39.676548104635096]
Safeguarding the intellectual property of machine learning models has emerged as a pressing concern in AI security.
Model watermarking is a powerful technique for protecting ownership of machine learning models.
We propose a novel model watermarking scheme, In-distribution Watermark Embedding (IWE), to overcome the limitations of existing method.
arXiv Detail & Related papers (2024-09-10T00:55:21Z) - Watermarking Recommender Systems [52.207721219147814]
We introduce Autoregressive Out-of-distribution Watermarking (AOW), a novel technique tailored specifically for recommender systems.
Our approach entails selecting an initial item and querying it through the oracle model, followed by the selection of subsequent items with small prediction scores.
To assess the efficacy of the watermark, the model is tasked with predicting the subsequent item given a truncated watermark sequence.
arXiv Detail & Related papers (2024-07-17T06:51:24Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
We introduce a novel approach, EnTruth, which Enhances Traceability of unauthorized dataset usage.
By strategically incorporating the template memorization, EnTruth can trigger the specific behavior in unauthorized models as the evidence of infringement.
Our method is the first to investigate the positive application of memorization and use it for copyright protection, which turns a curse into a blessing.
arXiv Detail & Related papers (2024-06-20T02:02:44Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
Large language models (LLMs) demonstrate general intelligence across a variety of machine learning tasks.
adversaries can still utilize model extraction attacks to steal the model intelligence encoded in model generation.
Watermarking technology offers a promising solution for defending against such attacks by embedding unique identifiers into the model-generated content.
arXiv Detail & Related papers (2024-05-03T06:41:48Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Learnable Linguistic Watermarks for Tracing Model Extraction Attacks on Large Language Models [20.44680783275184]
Current watermarking techniques against model extraction attacks rely on signal insertion in model logits or post-processing of generated text.
We propose a novel method for embedding learnable linguistic watermarks in Large Language Models (LLMs)
Our approach subtly modifies the LLM's output distribution by introducing controlled noise into token frequency distributions, embedding a statistically identifiable watermark.
arXiv Detail & Related papers (2024-04-28T14:45:53Z) - Probabilistically Robust Watermarking of Neural Networks [4.332441337407564]
We introduce a novel trigger set-based watermarking approach that demonstrates resilience against functionality stealing attacks.
Our approach does not require additional model training and can be applied to any model architecture.
arXiv Detail & Related papers (2024-01-16T10:32:13Z) - Performance-lossless Black-box Model Watermarking [69.22653003059031]
We propose a branch backdoor-based model watermarking protocol to protect model intellectual property.
In addition, we analyze the potential threats to the protocol and provide a secure and feasible watermarking instance for language models.
arXiv Detail & Related papers (2023-12-11T16:14:04Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Intellectual Property Protection of Diffusion Models via the Watermark
Diffusion Process [22.38407658885059]
This paper introduces WDM, a novel watermarking solution for diffusion models without imprinting the watermark during task generation.
It involves training a model to concurrently learn a Watermark Diffusion Process (WDP) for embedding watermarks alongside the standard diffusion process for task generation.
arXiv Detail & Related papers (2023-06-06T06:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.