They Look Like Each Other: Case-based Reasoning for Explainable Depression Detection on Twitter using Large Language Models
- URL: http://arxiv.org/abs/2407.21041v1
- Date: Sun, 21 Jul 2024 20:13:50 GMT
- Title: They Look Like Each Other: Case-based Reasoning for Explainable Depression Detection on Twitter using Large Language Models
- Authors: Mohammad Saeid Mahdavinejad, Peyman Adibi, Amirhassan Monadjemi, Pascal Hitzler,
- Abstract summary: We introduce ProtoDep, a novel, explainable framework for Twitter-based depression detection.
ProtoDep provides transparent explanations at three levels: (i) symptom-level explanations for each tweet and user, (ii) case-based explanations comparing the user to similar individuals, and (iii) transparent decision-making through classification weights.
- Score: 3.5904920375592098
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Depression is a common mental health issue that requires prompt diagnosis and treatment. Despite the promise of social media data for depression detection, the opacity of employed deep learning models hinders interpretability and raises bias concerns. We address this challenge by introducing ProtoDep, a novel, explainable framework for Twitter-based depression detection. ProtoDep leverages prototype learning and the generative power of Large Language Models to provide transparent explanations at three levels: (i) symptom-level explanations for each tweet and user, (ii) case-based explanations comparing the user to similar individuals, and (iii) transparent decision-making through classification weights. Evaluated on five benchmark datasets, ProtoDep achieves near state-of-the-art performance while learning meaningful prototypes. This multi-faceted approach offers significant potential to enhance the reliability and transparency of depression detection on social media, ultimately aiding mental health professionals in delivering more informed care.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Detecting mental disorder on social media: a ChatGPT-augmented
explainable approach [1.7999333451993955]
In the digital era, the prevalence of depressive symptoms expressed on social media has raised serious concerns.
This paper proposes a novel methodology that effectively combines Large Language Models (LLMs) with eXplainable Artificial Intelligence (XAI) and conversational agents like ChatGPT.
explanations are achieved by integrating BERTweet, a Twitter-specific variant of BERT, into a novel self-explanatory model, namely BERT-XDD.
The interpretability is further enhanced using ChatGPT to transform technical explanations into human-readable commentaries.
arXiv Detail & Related papers (2024-01-30T22:22:55Z) - Explainable Depression Symptom Detection in Social Media [2.677715367737641]
We propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings.
Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms.
arXiv Detail & Related papers (2023-10-20T17:05:27Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Dynamic Graph Representation Learning for Depression Screening with
Transformer [13.551342607089184]
Social media platforms present research opportunities to investigate mental health and potentially detect instances of mental illness.
Existing depression detection methods are constrained due to the reliance on feature engineering and the lack of consideration for time-varying factors.
We propose ContrastEgo, which treats each user as a dynamic time-evolving attributed graph (ego-network)
We show that ContrastEgo significantly outperforms the state-of-the-art methods in terms of all the effectiveness metrics in various experimental settings.
arXiv Detail & Related papers (2023-05-10T20:34:40Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Hierarchical Attention Network for Explainable Depression Detection on
Twitter Aided by Metaphor Concept Mappings [15.19024278125422]
We propose a novel explainable model for depression detection on Twitter.
It comprises a novel encoder combining hierarchical attention mechanisms and feed-forward neural networks.
It not only detects depressed individuals, but also identifies features of such users' tweets and associated metaphor concept mappings.
arXiv Detail & Related papers (2022-09-15T17:36:18Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.