Enhancing Depression Detection with Chain-of-Thought Prompting: From Emotion to Reasoning Using Large Language Models
- URL: http://arxiv.org/abs/2502.05879v1
- Date: Sun, 09 Feb 2025 12:30:57 GMT
- Title: Enhancing Depression Detection with Chain-of-Thought Prompting: From Emotion to Reasoning Using Large Language Models
- Authors: Shiyu Teng, Jiaqing Liu, Rahul Kumar Jain, Shurong Chai, Ruibo Hou, Tomoko Tateyama, Lanfen Lin, Yen-wei Chen,
- Abstract summary: Depression is one of the leading causes of disability worldwide.
Recent advancements in Large Language Models have shown promise in addressing mental health challenges.
We propose a Chain-of-Thought Prompting approach that enhances both the performance and interpretability of depression detection.
- Score: 9.43184936918456
- License:
- Abstract: Depression is one of the leading causes of disability worldwide, posing a severe burden on individuals, healthcare systems, and society at large. Recent advancements in Large Language Models (LLMs) have shown promise in addressing mental health challenges, including the detection of depression through text-based analysis. However, current LLM-based methods often struggle with nuanced symptom identification and lack a transparent, step-by-step reasoning process, making it difficult to accurately classify and explain mental health conditions. To address these challenges, we propose a Chain-of-Thought Prompting approach that enhances both the performance and interpretability of LLM-based depression detection. Our method breaks down the detection process into four stages: (1) sentiment analysis, (2) binary depression classification, (3) identification of underlying causes, and (4) assessment of severity. By guiding the model through these structured reasoning steps, we improve interpretability and reduce the risk of overlooking subtle clinical indicators. We validate our method on the E-DAIC dataset, where we test multiple state-of-the-art large language models. Experimental results indicate that our Chain-of-Thought Prompting technique yields superior performance in both classification accuracy and the granularity of diagnostic insights, compared to baseline approaches.
Related papers
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.
This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.
Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - A BERT-Based Summarization approach for depression detection [1.7363112470483526]
Depression is a globally prevalent mental disorder with potentially severe repercussions if not addressed.
Machine learning and artificial intelligence can autonomously detect depression indicators from diverse data sources.
Our study proposes text summarization as a preprocessing technique to diminish the length and intricacies of input texts.
arXiv Detail & Related papers (2024-09-13T02:14:34Z) - They Look Like Each Other: Case-based Reasoning for Explainable Depression Detection on Twitter using Large Language Models [3.5904920375592098]
We introduce ProtoDep, a novel, explainable framework for Twitter-based depression detection.
ProtoDep provides transparent explanations at three levels: (i) symptom-level explanations for each tweet and user, (ii) case-based explanations comparing the user to similar individuals, and (iii) transparent decision-making through classification weights.
arXiv Detail & Related papers (2024-07-21T20:13:50Z) - Depression Detection on Social Media with Large Language Models [23.075317886505193]
Depression detection aims to determine whether an individual suffers from depression by analyzing their history of posts on social media.
We propose a novel depression detection system called DORIS, combining medical knowledge and the recent advances in large language models.
arXiv Detail & Related papers (2024-03-16T01:01:16Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - DepreSym: A Depression Symptom Annotated Corpus and the Role of LLMs as
Assessors of Psychological Markers [3.5511184956329727]
We present the DepreSym dataset, consisting of 21580 sentences annotated according to their relevance to the Beck Depression Inventory-II symptoms.
This dataset serves as a valuable resource for advancing the development of models that incorporate depressive markers such as clinical symptoms.
arXiv Detail & Related papers (2023-08-21T14:44:31Z) - A Simple and Flexible Modeling for Mental Disorder Detection by Learning
from Clinical Questionnaires [0.2580765958706853]
We propose a novel approach that captures the semantic meanings directly from the text and compares them to symptom-related descriptions.
Our detailed analysis shows that the proposed model is effective at leveraging domain knowledge, transferable to other mental disorders, and providing interpretable detection results.
arXiv Detail & Related papers (2023-06-05T15:23:55Z) - KNSE: A Knowledge-aware Natural Language Inference Framework for
Dialogue Symptom Status Recognition [69.78432481474572]
We propose a novel framework called KNSE for symptom status recognition (SSR)
For each mentioned symptom in a dialogue window, we first generate knowledge about the symptom and hypothesis about status of the symptom, to form a (premise, knowledge, hypothesis) triplet.
The BERT model is then used to encode the triplet, which is further processed by modules including utterance aggregation, self-attention, cross-attention, and GRU to predict the symptom status.
arXiv Detail & Related papers (2023-05-26T11:23:26Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.