Artificial Intelligence in Extracting Diagnostic Data from Dental Records
- URL: http://arxiv.org/abs/2407.21050v2
- Date: Mon, 12 Aug 2024 23:38:35 GMT
- Title: Artificial Intelligence in Extracting Diagnostic Data from Dental Records
- Authors: Yao-Shun Chuang, Chun-Teh Lee, Oluwabunmi Tokede, Guo-Hao Lin, Ryan Brandon, Trung Duong Tran, Xiaoqian Jiang, Muhammad F. Walji,
- Abstract summary: This research addresses the issue of missing structured data in dental records by extracting diagnostic information from unstructured text.
We use advanced AI and NLP methods, leveraging GPT-4 to generate synthetic notes for fine-tuning a RoBERTa model.
We evaluated the model using 120 randomly selected clinical notes from two datasets, demonstrating its improved diagnostic extraction accuracy.
- Score: 6.132077347366551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research addresses the issue of missing structured data in dental records by extracting diagnostic information from unstructured text. The updated periodontology classification system's complexity has increased incomplete or missing structured diagnoses. To tackle this, we use advanced AI and NLP methods, leveraging GPT-4 to generate synthetic notes for fine-tuning a RoBERTa model. This significantly enhances the model's ability to understand medical and dental language. We evaluated the model using 120 randomly selected clinical notes from two datasets, demonstrating its improved diagnostic extraction accuracy. The results showed high accuracy in diagnosing periodontal status, stage, and grade, with Site 1 scoring 0.99 and Site 2 scoring 0.98. In the subtype category, Site 2 achieved perfect scores, outperforming Site 1. This method enhances extraction accuracy and broadens its use across dental contexts. The study underscores AI and NLP's transformative impact on healthcare delivery and management. Integrating AI and NLP technologies enhances documentation and simplifies administrative tasks by precisely extracting complex clinical information. This approach effectively addresses challenges in dental diagnostics. Using synthetic training data from LLMs optimizes the training process, improving accuracy and efficiency in identifying periodontal diagnoses from clinical notes. This innovative method holds promise for broader healthcare applications, potentially improving patient care quality.
Related papers
- DIRI: Adversarial Patient Reidentification with Large Language Models for Evaluating Clinical Text Anonymization [13.038800602897354]
We develop an adversarial approach using a large language model to re-identify the patient corresponding to a redacted clinical note.
Our method uses a large language model to reidentify the patient corresponding to a redacted clinical note.
Although ClinicalBERT was the most effective, masking all identified PII, our tool still reidentified 9% of clinical notes.
arXiv Detail & Related papers (2024-10-22T14:06:31Z) - A Knowledge-Enhanced Disease Diagnosis Method Based on Prompt Learning and BERT Integration [0.0]
This paper proposes a knowledge-enhanced disease diagnosis method based on a prompt learning framework.
The method retrieves structured knowledge from external knowledge graphs related to clinical cases, encodes it, and injects it into the prompt templates to enhance the language model's understanding and reasoning capabilities for the task.
arXiv Detail & Related papers (2024-09-16T15:34:58Z) - Language Models and Retrieval Augmented Generation for Automated Structured Data Extraction from Diagnostic Reports [2.932283627137903]
The study utilized two datasets: 7,294 radiology reports annotated for Brain Tumor Reporting and Data System (BT-RADS) scores and 2,154 pathology reports for isocitrate dehydrogenase (IDH) mutation status.
arXiv Detail & Related papers (2024-09-15T15:21:45Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - FineEHR: Refine Clinical Note Representations to Improve Mortality
Prediction [3.9026461169566673]
Large-scale electronic health records provide machine learning models with an abundance of clinical text and vital sign data.
Despite the emergence of advanced Natural Language Processing (NLP) algorithms for clinical note analysis, the complex textual structure and noise present in raw clinical data have posed significant challenges.
We propose FINEEHR, a system that utilizes two representation learning techniques, namely metric learning and fine-tuning, to refine clinical note embeddings.
arXiv Detail & Related papers (2023-04-24T02:42:52Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - A Systematic Review of Natural Language Processing Applied to Radiology
Reports [3.600747505433814]
This study systematically assesses recent literature in NLP applied to radiology reports.
Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics.
arXiv Detail & Related papers (2021-02-18T18:54:41Z) - Collaborative residual learners for automatic icd10 prediction using
prescribed medications [45.82374977939355]
We propose a novel collaborative residual learning based model to automatically predict ICD10 codes employing only prescriptions data.
We obtain multi-label classification accuracy of 0.71 and 0.57 of average precision, 0.57 and 0.38 of F1-score and 0.73 and 0.44 of accuracy in predicting principal diagnosis for inpatient and outpatient datasets respectively.
arXiv Detail & Related papers (2020-12-16T07:07:27Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.