An Advanced NLP Framework for Automated Medical Diagnosis with DeBERTa and Dynamic Contextual Positional Gating
- URL: http://arxiv.org/abs/2502.07755v1
- Date: Tue, 11 Feb 2025 18:32:24 GMT
- Title: An Advanced NLP Framework for Automated Medical Diagnosis with DeBERTa and Dynamic Contextual Positional Gating
- Authors: Mohammad Ali Labbaf Khaniki, Sahabeh Saadati, Mohammad Manthouri,
- Abstract summary: The proposed approach employs back-translation to generate diverse paraphrased datasets, improving robustness and mitigating overfitting in classification tasks.<n>For classification, an Attention-Based Feedforward Neural Network (ABFNN) is utilized, effectively focusing on the most relevant features to improve decision-making accuracy.<n>This method demonstrates the effectiveness of the proposed NLP framework for medical diagnosis, achieving remarkable results with an accuracy of 99.78%, recall of 99.72%, precision of 99.79%, and an F1-score of 99.75%.
- Score: 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel Natural Language Processing (NLP) framework for enhancing medical diagnosis through the integration of advanced techniques in data augmentation, feature extraction, and classification. The proposed approach employs back-translation to generate diverse paraphrased datasets, improving robustness and mitigating overfitting in classification tasks. Leveraging Decoding-enhanced BERT with Disentangled Attention (DeBERTa) with Dynamic Contextual Positional Gating (DCPG), the model captures fine-grained contextual and positional relationships, dynamically adjusting the influence of positional information based on semantic context to produce high-quality text embeddings. For classification, an Attention-Based Feedforward Neural Network (ABFNN) is utilized, effectively focusing on the most relevant features to improve decision-making accuracy. Applied to the classification of symptoms, clinical notes, and other medical texts, this architecture demonstrates its ability to address the complexities of medical data. The combination of data augmentation, contextual embedding generation, and advanced classification mechanisms offers a robust and accurate diagnostic tool, with potential applications in automated medical diagnosis and clinical decision support. This method demonstrates the effectiveness of the proposed NLP framework for medical diagnosis, achieving remarkable results with an accuracy of 99.78%, recall of 99.72%, precision of 99.79%, and an F1-score of 99.75%. These metrics not only underscore the model's robust performance in classifying medical texts with exceptional precision and reliability but also highlight its superiority over existing methods, making it a highly promising tool for automated diagnostic systems.
Related papers
- IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports [31.359504909372884]
We propose an interpretable-by-design framework for classifying radiology reports.
The key idea is to extract a set of most informative queries from a large set of reports and use these queries and their corresponding answers to predict a diagnosis.
Experiments on the MIMIC-CXR dataset demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2025-04-30T21:20:05Z) - Revisiting Medical Image Retrieval via Knowledge Consolidation [46.6989555659494]
We propose a novel method to consolidate knowledge of hierarchical features and functions.
We introduce Depth-aware Representation Fusion (DaRF) and Structure-aware Contrastive Hashing (SCH)
Our method achieves a 5.6-38.9% improvement in mean Average Precision on the anatomical radiology dataset.
arXiv Detail & Related papers (2025-03-12T13:16:42Z) - Graph Transformer with Disease Subgraph Positional Encoding for Improved Comorbidity Prediction [0.0]
Comorbidity, the co-occurrence of multiple medical conditions in a single patient, profoundly impacts disease management and outcomes.
This study introduces Transformer with Subgraph Positional morbidities (TSPE) for disease comorbidity prediction.
arXiv Detail & Related papers (2025-03-04T22:59:34Z) - Systematic Literature Review on Clinical Trial Eligibility Matching [0.24554686192257422]
Review highlights how explainable AI and standardized ontology can bolster clinician trust and broaden adoption.
Further research into advanced semantic and temporal representations, expanded data integration, and rigorous prospective evaluations is necessary to fully realize the transformative potential of NLP in clinical trial recruitment.
arXiv Detail & Related papers (2025-03-02T11:45:50Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.
We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.
We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Artificial Intelligence in Extracting Diagnostic Data from Dental Records [6.132077347366551]
This research addresses the issue of missing structured data in dental records by extracting diagnostic information from unstructured text.
We use advanced AI and NLP methods, leveraging GPT-4 to generate synthetic notes for fine-tuning a RoBERTa model.
We evaluated the model using 120 randomly selected clinical notes from two datasets, demonstrating its improved diagnostic extraction accuracy.
arXiv Detail & Related papers (2024-07-23T04:05:48Z) - Assertion Detection Large Language Model In-context Learning LoRA
Fine-tuning [2.401755243180179]
We introduce a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection.
Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method.
arXiv Detail & Related papers (2024-01-31T05:11:00Z) - Evaluating Echo State Network for Parkinson's Disease Prediction using
Voice Features [1.2289361708127877]
This study aims to develop a diagnostic model capable of achieving both high accuracy and minimizing false negatives.
Various machine learning methods, including Echo State Networks (ESN), Random Forest, k-nearest Neighbors, Support Vector, Extreme Gradient Boosting, and Decision Tree, are employed and thoroughly evaluated.
ESN consistently maintains a false negative rate of less than 8% in 83% of cases.
arXiv Detail & Related papers (2024-01-28T14:39:43Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - FineEHR: Refine Clinical Note Representations to Improve Mortality
Prediction [3.9026461169566673]
Large-scale electronic health records provide machine learning models with an abundance of clinical text and vital sign data.
Despite the emergence of advanced Natural Language Processing (NLP) algorithms for clinical note analysis, the complex textual structure and noise present in raw clinical data have posed significant challenges.
We propose FINEEHR, a system that utilizes two representation learning techniques, namely metric learning and fine-tuning, to refine clinical note embeddings.
arXiv Detail & Related papers (2023-04-24T02:42:52Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.