論文の概要: Amelia: A Large Model and Dataset for Airport Surface Movement Forecasting
- arxiv url: http://arxiv.org/abs/2407.21185v1
- Date: Tue, 30 Jul 2024 20:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:24:51.143810
- Title: Amelia: A Large Model and Dataset for Airport Surface Movement Forecasting
- Title(参考訳): Amelia:空港表面の動き予測のための大規模モデルとデータセット
- Authors: Ingrid Navarro, Pablo Ortega-Kral, Jay Patrikar, Haichuan Wang, Zelin Ye, Jong Hoon Park, Jean Oh, Sebastian Scherer,
- Abstract要約: Amelia-48 は System Wide Information Management (SWIM) Surface Movement Event Service (SMES) を用いて収集された大規模な表面運動データセットである。
Amelia-TFは、292日間にトレーニングされた、トランスフォーマーに基づく大規模マルチエージェントマルチエージェントトラジェクトリ予測モデルである。
未確認の空港では、異なる予測水平線長、エゴエージェント選択戦略、トレーニングレシピを示す実験が実施されている。
- 参考スコア(独自算出の注目度): 12.684598713362007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing demand for air travel requires technological advancements in air traffic management as well as mechanisms for monitoring and ensuring safe and efficient operations. In terminal airspaces, predictive models of future movements and traffic flows can help with proactive planning and efficient coordination; however, varying airport topologies, and interactions with other agents, among other factors, make accurate predictions challenging. Data-driven predictive models have shown promise for handling numerous variables to enable various downstream tasks, including collision risk assessment, taxi-out time prediction, departure metering, and emission estimations. While data-driven methods have shown improvements in these tasks, prior works lack large-scale curated surface movement datasets within the public domain and the development of generalizable trajectory forecasting models. In response to this, we propose two contributions: (1) Amelia-48, a large surface movement dataset collected using the System Wide Information Management (SWIM) Surface Movement Event Service (SMES). With data collection beginning in Dec 2022, the dataset provides more than a year's worth of SMES data (~30TB) and covers 48 airports within the US National Airspace System. In addition to releasing this data in the public domain, we also provide post-processing scripts and associated airport maps to enable research in the forecasting domain and beyond. (2) Amelia-TF model, a transformer-based next-token-prediction large multi-agent multi-airport trajectory forecasting model trained on 292 days or 9.4 billion tokens of position data encompassing 10 different airports with varying topology. The open-sourced model is validated on unseen airports with experiments showcasing the different prediction horizon lengths, ego-agent selection strategies, and training recipes to demonstrate the generalization capabilities.
- Abstract(参考訳): 航空輸送需要の増大は、航空交通管理の技術的進歩と、安全かつ効率的な運用の監視と確保のメカニズムを必要とする。
ターミナル空域では、将来の動きや交通の流れの予測モデルは、積極的な計画と効率的な調整に役立つが、空港のトポロジや他のエージェントとの相互作用は、正確な予測を困難にしている。
データ駆動予測モデルは、衝突リスク評価、タクシーアウト時間予測、出発測度、放出推定など、さまざまな下流タスクを可能にするために、多数の変数を扱うことを約束している。
データ駆動手法はこれらのタスクの改善を示したが、以前の研究では、パブリックドメイン内の大規模な曲面運動データセットや一般化可能な軌道予測モデルの開発が欠如していた。
そこで我々は,(1) Amelia-48, System Wide Information Management (SWIM) Surface Movement Event Service (SMES) を用いて収集した大規模表面運動データセットを提案する。
2022年12月にデータ収集が開始されたこのデータセットは、1年分のSMESデータ(約30TB)を提供し、アメリカ国立航空宇宙システム内の48の空港をカバーしている。
また、これらのデータをパブリックドメインで公開することに加えて、後処理スクリプトや関連する空港マップも提供し、予報領域等での研究を可能にする。
2) Amelia-TFモデル, 変圧器をベースとした大規模マルチエージェント多目的航路予測モデル。
オープンソースのモデルは、様々な予測水平線長、エゴエージェント選択戦略、一般化能力を示すためのトレーニングレシピを示す実験により、未確認の空港で検証されている。
関連論文リスト
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
マルチトランスモーション(Multi-Transmotion)は、モダリティ事前トレーニング用に設計された革新的なトランスフォーマーベースのモデルである。
提案手法は,下流タスクにおける各種データセット間の競合性能を示す。
論文 参考訳(メタデータ) (2024-11-04T23:15:21Z) - Multi-Agent Based Transfer Learning for Data-Driven Air Traffic
Applications [1.588400000775528]
本稿では、ATMシステムのマルチエージェント特性を完全に考慮し、航空交通管制官の判断を学習する、MA-BERT(Multi-Agent Bidirectional Representations from Transformers)モデルを提案する。
MA-BERTを主要空港からの大規模なデータセットで事前訓練し、それを他の空港や特定の航空交通用途に微調整することで、トレーニング時間を大幅に節約することができる。
論文 参考訳(メタデータ) (2024-01-23T22:21:07Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Big data-driven prediction of airspace congestion [40.02298833349518]
国立航空宇宙システム(NAS)内の特定の空域セクターの航空機数を正確に予測する新しいデータ管理・予測システムを提案する。
前処理ステップでは、システムは受信した生データを処理し、それをコンパクトなサイズに減らし、コンパクトなデータベースに格納する。
予測段階において、システムは歴史的軌跡から学習し、そのセグメントを使用して、セクター境界交差、気象パラメータ、その他の航空交通データなどの重要な特徴を収集する。
論文 参考訳(メタデータ) (2023-10-13T09:57:22Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
過去10年間で民間航空会社や民間機が前例のない増加を遂げたことは、航空交通管理の課題となっている。
正確な飛行軌跡予測は、安全かつ秩序ある飛行の決定に寄与する航空輸送管理において非常に重要である。
本研究では,大型旅客・輸送航空機の飛行軌道予測における最先端手法よりも優れた位相付き飛行軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-17T02:16:02Z) - Flight Demand Forecasting with Transformers [0.0]
この研究は、より良いデータソースと堅牢な予測アルゴリズムという2つの重要な側面から予測精度を改善することを目指している。
変圧器の成功に触発された我々は,複数の地平線における戦略的出発需要を予測するために,この手法を採用した。
ケーススタディでは、TFTは従来の予測手法よりも大きなマージンで優れた性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-11-04T22:00:12Z) - Large Scale Interactive Motion Forecasting for Autonomous Driving : The
Waymo Open Motion Dataset [84.3946567650148]
10万枚以上のシーンが10Hzで20秒に渡り、私たちの新しいデータセットには1750kmの道路上の570時間以上のユニークなデータが含まれています。
高精度な3d自動ラベルシステムを用いて,道路エージェント毎に高品質な3dバウンディングボックスを生成する。
シングルエージェントとジョイントエージェントの相互作用運動予測モデルの両方を総合的に評価する新しいメトリクスセットを紹介します。
論文 参考訳(メタデータ) (2021-04-20T17:19:05Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
本研究では,商業飛行における長期記憶ネットワーク(LSTM)に基づく航空機遅延予測システムを提案する。
このシステムは、自動監視放送(ADS-B)メッセージから歴史的軌跡から学習する。
従来と比べ,大規模なハブ空港ではより堅牢で正確であることが実証された。
論文 参考訳(メタデータ) (2021-03-20T18:37:06Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。