論文の概要: LFFR: Logistic Function For (multi-output) Regression
- arxiv url: http://arxiv.org/abs/2407.21187v1
- Date: Tue, 30 Jul 2024 20:52:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:56:56.807861
- Title: LFFR: Logistic Function For (multi-output) Regression
- Title(参考訳): LFFR:(複数出力)回帰のためのロジスティック関数
- Authors: John Chiang,
- Abstract要約: 我々は、複数出力の回帰問題に対処するために、プライバシー保護レグレッションに関する以前の作業を構築した。
複数の出力を処理するために、最初は単一出力のロジスティック回帰のために設計された新しいLFFRアルゴリズムを適用した。
複数の実世界のデータセットに対する評価は、我々の多出力LFFRアルゴリズムの有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this manuscript, we extend our previous work on privacy-preserving regression to address multi-output regression problems using data encrypted under a fully homomorphic encryption scheme. We build upon the simplified fixed Hessian approach for linear and ridge regression and adapt our novel LFFR algorithm, initially designed for single-output logistic regression, to handle multiple outputs. We further refine the constant simplified Hessian method for the multi-output context, ensuring computational efficiency and robustness. Evaluations on multiple real-world datasets demonstrate the effectiveness of our multi-output LFFR algorithm, highlighting its capability to maintain privacy while achieving high predictive accuracy. Normalizing both data and target predictions remains essential for optimizing homomorphic encryption parameters, confirming the practicality of our approach for secure and efficient multi-output regression tasks.
- Abstract(参考訳): 本書では, 完全同型暗号方式で暗号化されたデータを用いて, 多出力回帰問題に対処するために, プライバシ保存レグレッションに関するこれまでの研究を拡張した。
線形回帰とリッジ回帰を単純化したHessianアプローチを構築し、最初は単一出力のロジスティック回帰のために設計された新しいLFFRアルゴリズムを適用し、複数の出力を処理する。
計算効率とロバスト性を確保するため,マルチアウトプット・コンテキストに対する定数単純化ヘッセン法をさらに洗練する。
複数の実世界のデータセットに対する評価は、我々の多出力LFFRアルゴリズムの有効性を示し、高い予測精度を達成しつつ、プライバシを維持する能力を強調している。
データとターゲット予測の両方を正規化することは、同型暗号パラメータの最適化に不可欠であり、安全かつ効率的な多出力回帰タスクに対する我々のアプローチの実用性を確認している。
関連論文リスト
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - LFFR: Logistic Function For (single-output) Regression [0.0]
完全同型暗号方式で暗号化されたデータを用いたプライバシー保護型回帰トレーニングを実装した。
我々は,ロジスティック関数を用いたホモモルフィック回帰のための新しい,効率的なアルゴリズムLFFRを開発した。
論文 参考訳(メタデータ) (2024-07-13T17:33:49Z) - Adaptive debiased SGD in high-dimensional GLMs with streaming data [4.704144189806667]
我々は、高次元一般化線形モデルにおいて、オンライン推論に新しいアプローチを導入する。
本手法はシングルパスモードで動作し,時間と空間の複雑さを著しく低減する。
提案手法は,ADL (Approximated Debiased Lasso) と呼ばれ,有界な個人確率条件の必要性を緩和するだけでなく,数値性能も著しく向上することを示した。
論文 参考訳(メタデータ) (2024-05-28T15:36:48Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Online Efficient Secure Logistic Regression based on Function Secret Sharing [15.764294489590041]
機能秘密共有(FSS)に基づくプライバシー保護ロジスティック回帰のためのオンライン効率的なプロトコルを提案する。
我々のプロトコルは、サードパーティのディーラーの存在を前提とした2つの非凝固サーバで設計されている。
我々は,Sigmoid 関数の精度と MPC フレンドリな代替案を提案し,ロジスティック回帰学習プロセスを関数秘密共有ゲートにカプセル化する。
論文 参考訳(メタデータ) (2023-09-18T04:50:54Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Federated Coordinate Descent for Privacy-Preserving Multiparty Linear
Regression [0.5049057348282932]
我々は、FCDと呼ばれる新しい分散スキームであるFederated Coordinate Descentを紹介し、マルチパーティシナリオ下でこの問題に安全に対処する。
具体的には、セキュアな集約と追加の摂動により、(1)ローカル情報が他の当事者にリークされることがなく、(2)グローバルモデルパラメータがクラウドサーバに公開されることが保証される。
また,FCD方式は, 線形, リッジ, ラッソ回帰などの一般線形回帰に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-16T03:53:46Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Privacy-preserving Logistic Regression with Secret Sharing [0.0]
Newton-Raphson法を用いて秘密共有型プライバシー保護ロジスティック回帰プロトコルを提案する。
提案手法は,複数ソースからのロジスティック回帰を安全にトレーニングするために,大規模なデータセットを処理可能であることを示す。
論文 参考訳(メタデータ) (2021-05-14T14:53:50Z) - Optimal Feature Manipulation Attacks Against Linear Regression [64.54500628124511]
本稿では,データセットに慎重に設計した有害なデータポイントを付加したり,元のデータポイントを修正したりすることで,線形回帰による係数の操作方法について検討する。
エネルギー予算を考慮し, 目標が指定された回帰係数を1つ変更する場合に, 最適毒素データ点の閉形式解をまず提示する。
次に、攻撃者が1つの特定の回帰係数を変更しつつ、他をできるだけ小さく変更することを目的とした、より困難なシナリオに分析を拡張します。
論文 参考訳(メタデータ) (2020-02-29T04:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。