論文の概要: Informed Correctors for Discrete Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.21243v2
- Date: Thu, 13 Mar 2025 20:39:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 16:13:23.393618
- Title: Informed Correctors for Discrete Diffusion Models
- Title(参考訳): 離散拡散モデルのためのインフォームド補正器
- Authors: Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, Scott Linderman,
- Abstract要約: 本稿では, 近似誤差をより確実に対応させるために, 拡散モデルにより補正器が通知される予測器・補正器サンプリング方式を提案する。
トークン化された ImageNet 256x256 において、この手法はより少ないステップで優れたサンプルを生成し、離散拡散モデルのFIDスコアを改良した。
- 参考スコア(独自算出の注目度): 31.814439169033616
- License:
- Abstract: Discrete diffusion has emerged as a powerful framework for generative modeling in discrete domains, yet efficiently sampling from these models remains challenging. Existing sampling strategies often struggle to balance computation and sample quality when the number of sampling steps is reduced, even when the model has learned the data distribution well. To address these limitations, we propose a predictor-corrector sampling scheme where the corrector is informed by the diffusion model to more reliably counter the accumulating approximation errors. To further enhance the effectiveness of our informed corrector, we introduce complementary architectural modifications based on hollow transformers and a simple tailored training objective that leverages more training signal. We use a synthetic example to illustrate the failure modes of existing samplers and show how informed correctors alleviate these problems. On tokenized ImageNet 256x256, this approach consistently produces superior samples with fewer steps, achieving improved FID scores for discrete diffusion models. These results underscore the potential of informed correctors for fast and high-fidelity generation using discrete diffusion.
- Abstract(参考訳): 離散拡散は離散領域における生成モデリングの強力なフレームワークとして登場したが、これらのモデルから効率的にサンプリングすることは依然として困難である。
既存のサンプリング戦略は、たとえモデルがデータ分布を十分に学習したとしても、サンプリングステップの数を減らしたとき、計算とサンプル品質のバランスをとるのに苦労することが多い。
これらの制約に対処するため,拡散モデルにより予測器を通知し,近似誤差をより確実に対処する予測器・補正器サンプリング手法を提案する。
インフォメーション・リフレクタの有効性をさらに高めるために,ホロウ・トランスフォーマーに基づく補完的なアーキテクチャ変更と,より多くのトレーニング信号を活用するための簡易な調整訓練目標を導入する。
既存のサンプル装置の故障モードを説明するために合成例を使用し、これらの問題をいかに情報的修正者が緩和するかを示す。
トークン化された ImageNet 256x256 において、この手法はより少ないステップで優れたサンプルを生成し、離散拡散モデルのFIDスコアを改良した。
これらの結果は、離散拡散を用いた高速かつ高忠実な生成のための情報補正の可能性を裏付けるものである。
関連論文リスト
- Accelerated Diffusion Models via Speculative Sampling [89.43940130493233]
投機的サンプリングは、大規模言語モデルにおける推論を加速する一般的な手法である。
我々は投機的サンプリングを拡散モデルに拡張し、連続したベクトル値のマルコフ連鎖を介してサンプルを生成する。
本稿では,ドラフトモデルをトレーニングする必要のない,シンプルで効果的なアプローチを含む,さまざまなドラフト戦略を提案する。
論文 参考訳(メタデータ) (2025-01-09T16:50:16Z) - Local Flow Matching Generative Models [19.859984725284896]
局所フローマッチング(Local Flow Matching)は、フローベース生成モデルに基づく密度推定のための計算フレームワークである。
$textttLFM$はシミュレーション不要のスキームを採用し、フローマッチングサブモデルのシーケンスを漸進的に学習する。
FMと比較して, $textttLFM$ のトレーニング効率と競争的生成性能の改善を実証した。
論文 参考訳(メタデータ) (2024-10-03T14:53:10Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Bridging the Gap: Addressing Discrepancies in Diffusion Model Training
for Classifier-Free Guidance [1.6804613362826175]
拡散モデルは、生成モデルにおいて重要な進歩として現れている。
本稿では,従来の訓練方法と所望の条件付きサンプリング行動との相違点を明らかにすることを目的とする。
トレーニング目標とサンプリング行動との整合性を向上する改良された損失関数を導入する。
論文 参考訳(メタデータ) (2023-11-02T02:03:12Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Improved Denoising Diffusion Probabilistic Models [4.919647298882951]
その結果,ddpmは高いサンプル品質を維持しつつ,競合的なログライク性を達成できることがわかった。
また,逆拡散過程の学習分散により,フォワードパスが桁違いに小さくサンプリングできることがわかった。
これらのモデルのサンプルの品質と可能性について,モデルのキャパシティとトレーニング計算でスムーズに拡張できることを示し,スケーラビリティを向上する。
論文 参考訳(メタデータ) (2021-02-18T23:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。