Leveraging Adaptive Implicit Representation Mapping for Ultra High-Resolution Image Segmentation
- URL: http://arxiv.org/abs/2407.21256v1
- Date: Wed, 31 Jul 2024 00:34:37 GMT
- Title: Leveraging Adaptive Implicit Representation Mapping for Ultra High-Resolution Image Segmentation
- Authors: Ziyu Zhao, Xiaoguang Li, Pingping Cai, Canyu Zhang, Song Wang,
- Abstract summary: Implicit representation mapping (IRM) can translate image features to any continuous resolution, showcasing its potent capability for ultra-high-resolution image segmentation refinement.
Current IRM-based methods for refining ultra-high-resolution image segmentation often rely on CNN-based encoders to extract image features.
We propose a novel approach that leverages the newly proposed Implicit Representation Mapping (AIRM) for ultra-high-resolution Image Function.
- Score: 19.87987918759425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit representation mapping (IRM) can translate image features to any continuous resolution, showcasing its potent capability for ultra-high-resolution image segmentation refinement. Current IRM-based methods for refining ultra-high-resolution image segmentation often rely on CNN-based encoders to extract image features and apply a Shared Implicit Representation Mapping Function (SIRMF) to convert pixel-wise features into segmented results. Hence, these methods exhibit two crucial limitations. Firstly, the CNN-based encoder may not effectively capture long-distance information, resulting in a lack of global semantic information in the pixel-wise features. Secondly, SIRMF is shared across all samples, which limits its ability to generalize and handle diverse inputs. To address these limitations, we propose a novel approach that leverages the newly proposed Adaptive Implicit Representation Mapping (AIRM) for ultra-high-resolution Image Segmentation. Specifically, the proposed method comprises two components: (1) the Affinity Empowered Encoder (AEE), a robust feature extractor that leverages the benefits of the transformer architecture and semantic affinity to model long-distance features effectively, and (2) the Adaptive Implicit Representation Mapping Function (AIRMF), which adaptively translates pixel-wise features without neglecting the global semantic information, allowing for flexible and precise feature translation. We evaluated our method on the commonly used ultra-high-resolution segmentation refinement datasets, i.e., BIG and PASCAL VOC 2012. The extensive experiments demonstrate that our method outperforms competitors by a large margin. The code is provided in supplementary material.
Related papers
- MacFormer: Semantic Segmentation with Fine Object Boundaries [38.430631361558426]
We introduce a new semantic segmentation architecture, MacFormer'', which features two key components.
Firstly, using learnable agent tokens, a Mutual Agent Cross-Attention (MACA) mechanism effectively facilitates the bidirectional integration of features across encoder and decoder layers.
Secondly, a Frequency Enhancement Module (FEM) in the decoder leverages high-frequency and low-frequency components to boost features in the frequency domain.
MacFormer is demonstrated to be compatible with various network architectures and outperforms existing methods in both accuracy and efficiency on datasets benchmark ADE20K and Cityscapes.
arXiv Detail & Related papers (2024-08-11T05:36:10Z) - Local-to-Global Cross-Modal Attention-Aware Fusion for HSI-X Semantic Segmentation [19.461033552684576]
We propose a Local-to-Global Cross-modal Attention-aware Fusion (LoGoCAF) framework for HSI-X classification.
LoGoCAF adopts a pixel-to-pixel two-branch semantic segmentation architecture to learn information from HSI and X modalities.
arXiv Detail & Related papers (2024-06-25T16:12:20Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
We propose a novel approach to densely ground visual entities from a long caption.
We leverage a large multimodal model to extract semantic nouns, a class-a segmentation model to generate entity-level segmentation, and a multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask.
arXiv Detail & Related papers (2024-02-04T16:06:05Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - Improved-Flow Warp Module for Remote Sensing Semantic Segmentation [9.505303195320023]
We propose a new module, called improved-flow warp module (IFWM), to adjust semantic feature maps across different scales for remote sensing semantic segmentation.
IFWM computes the offsets of pixels by a learnable way, which can alleviate the misalignment of the multi-scale features.
We validate our method on several remote sensing datasets, and the results prove the effectiveness of our method.
arXiv Detail & Related papers (2022-05-09T10:15:18Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.