論文の概要: FreqTSF: Time Series Forecasting Via Simulating Frequency Kramer-Kronig Relations
- arxiv url: http://arxiv.org/abs/2407.21275v1
- Date: Wed, 31 Jul 2024 01:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:04:58.109663
- Title: FreqTSF: Time Series Forecasting Via Simulating Frequency Kramer-Kronig Relations
- Title(参考訳): FreqTSF: 周波数クラマー-クロニッヒ関係を模擬した時系列予測
- Authors: Rujia Shen, Liangliang Liu, Boran Wang, Yi Guan, Yang Yang, Jingchi Jiang,
- Abstract要約: 時系列予測(TSF)は、電気変換、金融取引、医療モニタリング、スマート農業などの応用において非常に重要である。
トランスフォーマーをベースとした手法は時系列データを処理できるが、長期時系列を予測する能力は自己認識機構の「反秩序」性によって制限される。
本稿では、FreqBlockを提案し、まず周波数変換モジュールを通して周波数表現を得る。
新たに設計された周波数クロスアテンションは、実部と虚部の間の拡張周波数表現をオブザーバし、アテンション機構と固有クラマーとのリンクを確立する。
- 参考スコア(独自算出の注目度): 6.945609078450277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting (TSF) is immensely important in extensive applications, such as electricity transformation, financial trade, medical monitoring, and smart agriculture. Although Transformer-based methods can handle time series data, their ability to predict long-term time series is limited due to the ``anti-order" nature of the self-attention mechanism. To address this problem, we focus on frequency domain to weaken the impact of order in TSF and propose the FreqBlock, where we first obtain frequency representations through the Frequency Transform Module. Subsequently, a newly designed Frequency Cross Attention is used to obtian enhanced frequency representations between the real and imaginary parts, thus establishing a link between the attention mechanism and the inherent Kramer-Kronig relations (KKRs). Our backbone network, FreqTSF, adopts a residual structure by concatenating multiple FreqBlocks to simulate KKRs in the frequency domain and avoid degradation problems. On a theoretical level, we demonstrate that the proposed two modules can significantly reduce the time and memory complexity from $\mathcal{O}(L^2)$ to $\mathcal{O}(L)$ for each FreqBlock computation. Empirical studies on four benchmark datasets show that FreqTSF achieves an overall relative MSE reduction of 15\% and an overall relative MAE reduction of 11\% compared to the state-of-the-art methods. The code will be available soon.
- Abstract(参考訳): 時系列予測(TSF)は、電気変換、金融取引、医療モニタリング、スマート農業などの広範な応用において非常に重要である。
Transformer をベースとした手法は時系列データを処理できるが,自己保持機構の ‘anti-order' 特性のため,長期時系列を予測できる能力は限られている。
この問題に対処するために、周波数領域に着目して、TSFにおける順序の影響を弱めるとともに、FreqBlockを提案し、まず周波数変換モジュールを通して周波数表現を得る。
その後、新たに設計された周波数クロスアテンションを用いて実部と虚部の間の拡張周波数表現をオブザーバし、アテンション機構と固有のクラマー・クロニッヒ関係(KKR)のリンクを確立する。
我々のバックボーンネットワークであるFreqTSFは、複数のFreqBlocksを結合して周波数領域のKKRをシミュレートし、劣化問題を回避し、残留構造を採用する。
理論的レベルでは、提案した2つのモジュールは、各 FreqBlock 計算に対して $\mathcal{O}(L^2)$ から $\mathcal{O}(L)$ まで、時間とメモリの複雑さを著しく低減できることを示した。
4つのベンチマークデータセットに関する実証研究により、FreqTSFは、最先端の手法と比較して、全体の相対的MSEの15倍、総合的相対的MAEの11倍を達成していることが示された。
コードはまもなく利用可能になる。
関連論文リスト
- A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data [32.98264375121064]
Federated Learning (FL)は、協調機械学習における画期的なパラダイムとして登場した。
本稿では,2段階サンプリングモデルにおけるディープフェデレート回帰の一般化特性について検討する。
論文 参考訳(メタデータ) (2024-10-28T01:36:25Z) - Online Learning and Information Exponents: On The Importance of Batch size, and Time/Complexity Tradeoffs [24.305423716384272]
我々は,1パス勾配勾配(SGD)を有する2層ニューラルネットワークの繰り返し時間に対するバッチサイズの影響について検討した。
大規模なバッチで勾配更新を行うことで、サンプル全体の複雑さを変えることなく、トレーニング時間を最小化できることが示される。
低次元常微分方程式(ODE)のシステムにより、トレーニングの進捗を追跡できることを示す。
論文 参考訳(メタデータ) (2024-06-04T09:44:49Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
時系列予測は、様々な領域における複雑な力学の理解と予測に不可欠である。
GridTSTは、革新的な多方向性の注意を用いた2つのアプローチの利点を組み合わせたモデルである。
このモデルは、さまざまな現実世界のデータセットに対して、常に最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-05-22T16:41:21Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - SViTT: Temporal Learning of Sparse Video-Text Transformers [65.93031164906812]
SViTTは,多フレーム推論が可能な疎ビデオテキストアーキテクチャであり,注目度の高い単純変換器よりもはるかに低コストである。
SViTTは、自己注意におけるトークン間のクエリキー通信を制限するエッジ空間と、非形式的視覚トークンを破棄する空間の2つの形式を採用している。
論文 参考訳(メタデータ) (2023-04-18T08:17:58Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
我々は、既存のアルゴリズムが適用できないXリスクのファミリーを最適化するために、新しい連邦学習(FL)問題に取り組む。
Xリスクに対するFLアルゴリズムを設計する際の課題は、複数のマシンに対する目的の非可逆性と、異なるマシン間の相互依存にある。
論文 参考訳(メタデータ) (2022-10-26T00:23:36Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
時系列解析は、天気予報、異常検出、行動認識などの応用において非常に重要である。
従来の手法では、1D時系列から直接これを達成しようと試みていた。
複雑な経時的変化を、複数の経時的変化と経時的変化に明らかにする。
論文 参考訳(メタデータ) (2022-10-05T12:19:51Z) - Long-term Leap Attention, Short-term Periodic Shift for Video
Classification [41.87505528859225]
ビデオトランスは、静的な視覚変換器よりも計算負荷が大きい。
本稿では,ビデオトランスフォーマーのための長期的textbftextitLeap Attention'(LAN),短期的textbftextitPeriodic Shift'(textitP-Shift)モジュールであるLAPSを提案する。
論文 参考訳(メタデータ) (2022-07-12T13:30:15Z) - On Multivariate Singular Spectrum Analysis and its Variants [23.517864567789353]
本稿では,多変量特異解析 (mSSA) の変種を導入,解析する。
我々は、計算とサンプル外予測の両方に対して平均2乗誤差を1/sqrtmin(N, T )T$として効果的に設定する。
ベンチマークデータセットでは、我々のmSSAの変種は最先端のニューラルネットワーク時系列手法と競合する。
論文 参考訳(メタデータ) (2020-06-24T03:17:01Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
本稿では、データサンプルの数が$n$である現実的な環境で、ランダムフーリエ(RFF)回帰の正確さを特徴付けます。
この分析はまた、大きな$n,p,N$のトレーニングとテスト回帰エラーの正確な推定も提供する。
論文 参考訳(メタデータ) (2020-06-09T02:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。