Enhanced Self-Checkout System for Retail Based on Improved YOLOv10
- URL: http://arxiv.org/abs/2407.21308v2
- Date: Fri, 16 Aug 2024 02:28:07 GMT
- Title: Enhanced Self-Checkout System for Retail Based on Improved YOLOv10
- Authors: Lianghao Tan, Shubing Liu, Jing Gao, Xiaoyi Liu, Linyue Chu, Huangqi Jiang,
- Abstract summary: This paper presents a novel self-checkout system for retail based on an improved YOLOv10 network.
We propose targeted optimizations to the YOLOv10 model, by incorporating the detection head structure from YOLOv8.
Experimental results demonstrate that our system outperforms existing methods in both product recognition accuracy and checkout speed.
- Score: 5.948834833277584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of deep learning technologies, computer vision has shown immense potential in retail automation. This paper presents a novel self-checkout system for retail based on an improved YOLOv10 network, aimed at enhancing checkout efficiency and reducing labor costs. We propose targeted optimizations to the YOLOv10 model, by incorporating the detection head structure from YOLOv8, which significantly improves product recognition accuracy. Additionally, we develop a post-processing algorithm tailored for self-checkout scenarios, to further enhance the application of system. Experimental results demonstrate that our system outperforms existing methods in both product recognition accuracy and checkout speed. This research not only provides a new technical solution for retail automation but offers valuable insights into optimizing deep learning models for real-world applications.
Related papers
- YOLOv12: A Breakdown of the Key Architectural Features [0.5639904484784127]
YOLOv12 is a significant advancement in single-stage, real-time object detection.
It incorporates an optimised backbone (R-ELAN), 7x7 separable convolutions, and FlashAttention-driven area-based attention.
It offers scalable solutions for both latency-sensitive and high-accuracy applications.
arXiv Detail & Related papers (2025-02-20T17:08:43Z) - Detecting and Classifying Defective Products in Images Using YOLO [2.4959391076108255]
The YOLO (You Only Look Once) algorithm has emerged as a prominent solution in the field of product defect detection.
This study aims to use the YOLO algorithm to detect and classify defects in product images.
The results demonstrate that this method can achieve real-time detection while maintaining high detection accuracy.
arXiv Detail & Related papers (2024-12-22T09:14:01Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning [15.615208767760663]
This study focuses on automated picking systems in warehouses, utilizing deep learning and reinforcement learning technologies.
We demonstrate the effectiveness of these technologies in improving robot picking performance and adaptability to complex environments.
arXiv Detail & Related papers (2024-08-29T15:39:12Z) - Gradient-based Learning in State-based Potential Games for Self-Learning Production Systems [3.156133122658661]
We introduce gradient-based optimization methods for state-based potential games (SbPGs) within self-learning distributed production systems.
SbPGs are recognised for their efficacy in enabling self-optimizing distributed multi-agent systems.
arXiv Detail & Related papers (2024-06-14T13:26:36Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - ALT: An Automatic System for Long Tail Scenario Modeling [15.76033166478158]
We present an automatic system named ALT to deal with this problem.
Several efforts are taken to improve the algorithms used in our system, such as employing various automatic machine learning related techniques.
To build the system, many optimizations are performed from a systematic perspective, and essential modules are armed.
arXiv Detail & Related papers (2023-05-19T02:35:39Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Improving Auto-Augment via Augmentation-Wise Weight Sharing [123.71986174280741]
A key component of automatic augmentation search is the evaluation process for a particular augmentation policy.
In this paper, we dive into the dynamics of augmented training of the model.
We design a powerful and efficient proxy task based on the Augmentation-Wise Weight Sharing (AWS) to form a fast yet accurate evaluation process.
arXiv Detail & Related papers (2020-09-30T15:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.