Self-Improvement in Language Models: The Sharpening Mechanism
- URL: http://arxiv.org/abs/2412.01951v2
- Date: Wed, 04 Dec 2024 14:20:21 GMT
- Title: Self-Improvement in Language Models: The Sharpening Mechanism
- Authors: Audrey Huang, Adam Block, Dylan J. Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jordan T. Ash, Akshay Krishnamurthy,
- Abstract summary: We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
- Score: 70.9248553790022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work in language modeling has raised the possibility of self-improvement, where a language models evaluates and refines its own generations to achieve higher performance without external feedback. It is impossible for this self-improvement to create information that is not already in the model, so why should we expect that this will lead to improved capabilities? We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening. Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to ``sharpen'' the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences. We begin by introducing a new statistical framework for sharpening in which the learner aims to sharpen a pre-trained base policy via sample access, and establish fundamental limits. Then we analyze two natural families of self-improvement algorithms based on SFT and RLHF. We find that (i) the SFT-based approach is minimax optimal whenever the initial model has sufficient coverage, but (ii) the RLHF-based approach can improve over SFT-based self-improvement by leveraging online exploration, bypassing the need for coverage. Finally, we empirically validate the sharpening mechanism via inference-time and amortization experiments. We view these findings as a starting point toward a foundational understanding that can guide the design and evaluation of self-improvement algorithms.
Related papers
- Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.
We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.
Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models.
We propose self-certainty, a novel and efficient metric to estimate response quality without requiring external reward models.
Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities.
arXiv Detail & Related papers (2025-02-25T19:08:07Z) - Iterative Deepening Sampling for Large Language Models [27.807695570974644]
Training models to achieve effective self-correction and self-correction remains a significant challenge.
We propose a novel iterative sampling algorithm framework designed to enhance self-correction and generate higher-quality samples.
arXiv Detail & Related papers (2025-02-08T04:39:51Z) - Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models [10.449015816015566]
Self-improvement is a mechanism in Large Language Model (LLM) pre-training, post-training and test-time inference.<n>We provide a mathematical formulation for self-improvement, which is largely governed by a quantity which we formalize as the generation-verification gap.<n>We also examine when self-improvement is possible, an iterative self-improvement procedure, and ways to improve its performance.
arXiv Detail & Related papers (2024-12-03T18:47:26Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.
Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.
We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - Self-training Language Models for Arithmetic Reasoning [0.0]
We explore the potential of improving models' reasoning capabilities without new data.
We find that models can substantially improve in both single-round (offline) and online self-training.
arXiv Detail & Related papers (2024-07-11T11:06:05Z) - Can I understand what I create? Self-Knowledge Evaluation of Large Language Models [31.85129258347539]
Large language models (LLMs) have achieved remarkable progress in linguistic tasks.
Inspired by Feynman's principle of understanding through creation, we introduce a self-knowledge evaluation framework.
arXiv Detail & Related papers (2024-06-10T09:53:54Z) - Re-ReST: Reflection-Reinforced Self-Training for Language Agents [101.22559705696885]
Self-training in language agents can generate supervision from the agent itself.
We present Reflection-Reinforced Self-Training (Re-ReST), which uses a textitreflector to refine low-quality generated samples.
arXiv Detail & Related papers (2024-06-03T16:21:38Z) - LLMs can learn self-restraint through iterative self-reflection [57.26854891567574]
Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of knowledge and uncertainty associated with specific topics.
This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach.
We devise a utility function that can encourage the model to produce responses only when it is confident in them.
arXiv Detail & Related papers (2024-05-15T13:35:43Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Entailment as Robust Self-Learner [14.86757876218415]
We design a prompting strategy that formulates a number of different NLU tasks as contextual entailment.
We propose the Simple Pseudo-Label Editing (SimPLE) algorithm for better pseudo-labeling quality in self-training.
arXiv Detail & Related papers (2023-05-26T18:41:23Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
We use the regularization ability of Bayesian methods to frame prompt learning as a variational inference problem.
Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts.
We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space.
arXiv Detail & Related papers (2022-10-05T17:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.