EUDA: An Efficient Unsupervised Domain Adaptation via Self-Supervised Vision Transformer
- URL: http://arxiv.org/abs/2407.21311v1
- Date: Wed, 31 Jul 2024 03:29:28 GMT
- Title: EUDA: An Efficient Unsupervised Domain Adaptation via Self-Supervised Vision Transformer
- Authors: Ali Abedi, Q. M. Jonathan Wu, Ning Zhang, Farhad Pourpanah,
- Abstract summary: Unsupervised domain adaptation (UDA) aims to mitigate the domain shift issue, where the distribution of training (source) data differs from that of testing (target) data.
Many models have been developed to tackle this problem, and recently vision transformers (ViTs) have shown promising results.
This paper introduces an efficient model that reduces trainable parameters and allows for adjustable complexity.
- Score: 21.59850502993888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) aims to mitigate the domain shift issue, where the distribution of training (source) data differs from that of testing (target) data. Many models have been developed to tackle this problem, and recently vision transformers (ViTs) have shown promising results. However, the complexity and large number of trainable parameters of ViTs restrict their deployment in practical applications. This underscores the need for an efficient model that not only reduces trainable parameters but also allows for adjustable complexity based on specific needs while delivering comparable performance. To achieve this, in this paper we introduce an Efficient Unsupervised Domain Adaptation (EUDA) framework. EUDA employs the DINOv2, which is a self-supervised ViT, as a feature extractor followed by a simplified bottleneck of fully connected layers to refine features for enhanced domain adaptation. Additionally, EUDA employs the synergistic domain alignment loss (SDAL), which integrates cross-entropy (CE) and maximum mean discrepancy (MMD) losses, to balance adaptation by minimizing classification errors in the source domain while aligning the source and target domain distributions. The experimental results indicate the effectiveness of EUDA in producing comparable results as compared with other state-of-the-art methods in domain adaptation with significantly fewer trainable parameters, between 42% to 99.7% fewer. This showcases the ability to train the model in a resource-limited environment. The code of the model is available at: https://github.com/A-Abedi/EUDA.
Related papers
- Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation [16.5799094981322]
We introduce Few Trusted Samples Pseudo-labeling (FTSP) and Temperature Scaled Adaptive Loss (TSAL)
FTSP employs a limited subset of trusted samples from the target data to construct a classifier to infer pseudo-labels for the entire domain.
TSAL is designed with a unique dual temperature scheduling, adeptly balance diversity, discriminability, and the incorporation of pseudo-labels.
arXiv Detail & Related papers (2024-09-01T15:09:14Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
We propose a novel framework called Informative Data Mining (IDM) to enable efficient one-shot domain adaptation for semantic segmentation.
IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training.
Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7%/55.4% on the GTA5/SYNTHIA to Cityscapes adaptation tasks.
arXiv Detail & Related papers (2023-09-25T15:56:01Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Diffusion-based Target Sampler for Unsupervised Domain Adaptation [5.025971841729201]
Large domain shifts and the sample scarcity in the target domain make existing UDA methods achieve suboptimal performance.
We propose a plug-and-play Diffusion-based Target Sampler (DTS) to generate high fidelity and diversity pseudo target samples.
The generated samples can well simulate the data distribution of the target domain and help existing UDA methods transfer from the source domain to the target domain more easily.
arXiv Detail & Related papers (2023-03-17T02:07:43Z) - Towards Unsupervised Domain Adaptation via Domain-Transformer [0.0]
We propose the Domain-Transformer (DoT) for Unsupervised Domain Adaptation (UDA)
DoT integrates the CNN-backbones and the core attention mechanism of Transformers from a new perspective.
It achieves the local semantic consistency across domains, where the domain-level attention and manifold regularization are explored.
arXiv Detail & Related papers (2022-02-24T02:30:15Z) - UDALM: Unsupervised Domain Adaptation through Language Modeling [79.73916345178415]
We introduce UDALM, a fine-tuning procedure, using a mixed classification and Masked Language Model loss.
Our experiments show that performance of models trained with the mixed loss scales with the amount of available target data can be effectively used as a stopping criterion.
Our method is evaluated on twelve domain pairs of the Amazon Reviews Sentiment dataset, yielding $91.74%$ accuracy, which is an $1.11%$ absolute improvement over the state-of-versathe-art.
arXiv Detail & Related papers (2021-04-14T19:05:01Z) - Dynamic Domain Adaptation for Efficient Inference [12.713628738434881]
Domain adaptation (DA) enables knowledge transfer from a labeled source domain to an unlabeled target domain.
Most prior DA approaches leverage complicated and powerful deep neural networks to improve the adaptation capacity.
We propose a dynamic domain adaptation (DDA) framework, which can simultaneously achieve efficient target inference in low-resource scenarios.
arXiv Detail & Related papers (2021-03-26T08:53:16Z) - Knowledge Distillation for BERT Unsupervised Domain Adaptation [2.969705152497174]
A pre-trained language model, BERT, has brought significant performance improvements across a range of natural language processing tasks.
We propose a simple but effective unsupervised domain adaptation method, adversarial adaptation with distillation (AAD)
We evaluate our approach in the task of cross-domain sentiment classification on 30 domain pairs.
arXiv Detail & Related papers (2020-10-22T06:51:24Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.