Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2409.00741v1
- Date: Sun, 1 Sep 2024 15:09:14 GMT
- Title: Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation
- Authors: Andrea Maracani, Lorenzo Rosasco, Lorenzo Natale,
- Abstract summary: We introduce Few Trusted Samples Pseudo-labeling (FTSP) and Temperature Scaled Adaptive Loss (TSAL)
FTSP employs a limited subset of trusted samples from the target data to construct a classifier to infer pseudo-labels for the entire domain.
TSAL is designed with a unique dual temperature scheduling, adeptly balance diversity, discriminability, and the incorporation of pseudo-labels.
- Score: 16.5799094981322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks have significantly impacted many computer vision tasks. However, their effectiveness diminishes when test data distribution (target domain) deviates from the one of training data (source domain). In situations where target labels are unavailable and the access to the labeled source domain is restricted due to data privacy or memory constraints, Source-Free Unsupervised Domain Adaptation (SF-UDA) has emerged as a valuable tool. Recognizing the key role of SF-UDA under these constraints, we introduce a novel approach marked by two key contributions: Few Trusted Samples Pseudo-labeling (FTSP) and Temperature Scaled Adaptive Loss (TSAL). FTSP employs a limited subset of trusted samples from the target data to construct a classifier to infer pseudo-labels for the entire domain, showing simplicity and improved accuracy. Simultaneously, TSAL, designed with a unique dual temperature scheduling, adeptly balance diversity, discriminability, and the incorporation of pseudo-labels in the unsupervised adaptation objective. Our methodology, that we name Trust And Balance (TAB) adaptation, is rigorously evaluated on standard datasets like Office31 and Office-Home, and on less common benchmarks such as ImageCLEF-DA and Adaptiope, employing both ResNet50 and ViT-Large architectures. Our results compare favorably with, and in most cases surpass, contemporary state-of-the-art techniques, underscoring the effectiveness of our methodology in the SF-UDA landscape.
Related papers
- Unsupervised Adaptation of Polyp Segmentation Models via Coarse-to-Fine
Self-Supervision [16.027843524655516]
We study a practical problem of Source-Free Domain Adaptation (SFDA), which eliminates the reliance on annotated source data.
Current SFDA methods focus on extracting domain knowledge from the source-trained model but neglects the intrinsic structure of the target domain.
We propose a new SFDA framework, called Region-to-Pixel Adaptation Network(RPANet), which learns the region-level and pixel-level discriminative representations through coarse-to-fine self-supervision.
arXiv Detail & Related papers (2023-08-13T02:37:08Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Key Design Choices for Double-Transfer in Source-Free Unsupervised
Domain Adaptation [18.21955526087808]
This paper provides the first in-depth analysis of the main design choices in Source-Free Unsupervised Domain Adaptation (SF-UDA)
We pinpoint the normalization approach, pre-training strategy, and backbone architecture as the most critical factors.
We show that SF-UDA is competitive also beyond standard benchmarks and backbone architectures, performing on par with UDA at a fraction of the data and computational cost.
arXiv Detail & Related papers (2023-02-10T17:00:37Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Source-free Unsupervised Domain Adaptation for Blind Image Quality
Assessment [20.28784839680503]
Existing learning-based methods for blind image quality assessment (BIQA) are heavily dependent on large amounts of annotated training data.
In this paper, we take the first step towards the source-free unsupervised domain adaptation (SFUDA) in a simple yet efficient manner.
We present a group of well-designed self-supervised objectives to guide the adaptation of the BN affine parameters towards the target domain.
arXiv Detail & Related papers (2022-07-17T09:42:36Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
Cross-domain performance of automatic speech recognition (ASR) could be severely hampered due to mismatch between training and testing distributions.
Previous work has shown that self-supervised learning (SSL) or pseudo-labeling (PL) is effective in UDA by exploiting the self-supervisions of unlabeled data.
This work presents a systematic UDA framework to fully utilize the unlabeled data with self-supervision in the pre-training and fine-tuning paradigm.
arXiv Detail & Related papers (2022-06-20T14:02:53Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
Existing Unsupervised Domain Adaptation (UDA) methods presumes source and target domain data to be simultaneously available during training.
A pre-trained source model is always considered to be available, even though performing poorly on target due to the well-known domain shift problem.
We propose a unified method to tackle adaptive noise filtering and pseudo-label refinement.
arXiv Detail & Related papers (2021-03-29T22:18:34Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z) - A Free Lunch for Unsupervised Domain Adaptive Object Detection without
Source Data [69.091485888121]
Unsupervised domain adaptation assumes that source and target domain data are freely available and usually trained together to reduce the domain gap.
We propose a source data-free domain adaptive object detection (SFOD) framework via modeling it into a problem of learning with noisy labels.
arXiv Detail & Related papers (2020-12-10T01:42:35Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.