SHA-CNN: Scalable Hierarchical Aware Convolutional Neural Network for Edge AI
- URL: http://arxiv.org/abs/2407.21370v1
- Date: Wed, 31 Jul 2024 06:44:52 GMT
- Title: SHA-CNN: Scalable Hierarchical Aware Convolutional Neural Network for Edge AI
- Authors: Narendra Singh Dhakad, Yuvnish Malhotra, Santosh Kumar Vishvakarma, Kaushik Roy,
- Abstract summary: This paper introduces a Hierarchical Aware Convolutional Neural Network (SHA-CNN) model architecture for Edge AI applications.
The proposed hierarchical CNN model is meticulously crafted to strike a balance between computational efficiency and accuracy.
The key innovation lies in the model's hierarchical awareness, enabling it to discern and prioritize relevant features at multiple levels of abstraction.
- Score: 6.168286187549952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a Scalable Hierarchical Aware Convolutional Neural Network (SHA-CNN) model architecture for Edge AI applications. The proposed hierarchical CNN model is meticulously crafted to strike a balance between computational efficiency and accuracy, addressing the challenges posed by resource-constrained edge devices. SHA-CNN demonstrates its efficacy by achieving accuracy comparable to state-of-the-art hierarchical models while outperforming baseline models in accuracy metrics. The key innovation lies in the model's hierarchical awareness, enabling it to discern and prioritize relevant features at multiple levels of abstraction. The proposed architecture classifies data in a hierarchical manner, facilitating a nuanced understanding of complex features within the datasets. Moreover, SHA-CNN exhibits a remarkable capacity for scalability, allowing for the seamless incorporation of new classes. This flexibility is particularly advantageous in dynamic environments where the model needs to adapt to evolving datasets and accommodate additional classes without the need for extensive retraining. Testing has been conducted on the PYNQ Z2 FPGA board to validate the proposed model. The results achieved an accuracy of 99.34%, 83.35%, and 63.66% for MNIST, CIFAR-10, and CIFAR-100 datasets, respectively. For CIFAR-100, our proposed architecture performs hierarchical classification with 10% reduced computation while compromising only 0.7% accuracy with the state-of-the-art. The adaptability of SHA-CNN to FPGA architecture underscores its potential for deployment in edge devices, where computational resources are limited. The SHA-CNN framework thus emerges as a promising advancement in the intersection of hierarchical CNNs, scalability, and FPGA-based Edge AI.
Related papers
- Building Efficient Lightweight CNN Models [0.0]
Convolutional Neural Networks (CNNs) are pivotal in image classification tasks due to their robust feature extraction capabilities.
This paper introduces a methodology to construct lightweight CNNs while maintaining competitive accuracy.
The proposed model achieved a state-of-the-art accuracy of 99% on the handwritten digit MNIST and 89% on fashion MNIST, with only 14,862 parameters and a model size of 0.17 MB.
arXiv Detail & Related papers (2025-01-26T14:39:01Z) - LightGNN: Simple Graph Neural Network for Recommendation [14.514770044236375]
Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation.
Existing GNN paradigms face challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets.
We present LightGNN, a lightweight and distillation-based GNN pruning framework.
arXiv Detail & Related papers (2025-01-06T18:59:55Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Systematic Architectural Design of Scale Transformed Attention Condenser
DNNs via Multi-Scale Class Representational Response Similarity Analysis [93.0013343535411]
We propose a novel type of analysis called Multi-Scale Class Representational Response Similarity Analysis (ClassRepSim)
We show that adding STAC modules to ResNet style architectures can result in up to a 1.6% increase in top-1 accuracy.
Results from ClassRepSim analysis can be used to select an effective parameterization of the STAC module resulting in competitive performance.
arXiv Detail & Related papers (2023-06-16T18:29:26Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [69.10072367807095]
DPSGD requires clipping and noising of per-sample gradients.
This introduces a reduction in model utility compared to non-private training.
We distilled a new model architecture termed SmoothNet, which is characterised by increased robustness to the challenges of DP-SGD training.
arXiv Detail & Related papers (2022-05-09T07:51:54Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
Recent advances in edge intelligence require CNN inference on edge network to increase throughput and reduce latency.
To provide flexibility, dynamic parameter allocation to different mobile devices is required to implement either a predefined or defined on-the-fly CNN architecture.
We propose a library-based approach to design scalable and dynamic distributed CNN inference on the fly.
arXiv Detail & Related papers (2022-02-18T22:33:42Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.