論文の概要: Identity-Consistent Diffusion Network for Grading Knee Osteoarthritis Progression in Radiographic Imaging
- arxiv url: http://arxiv.org/abs/2407.21381v1
- Date: Wed, 31 Jul 2024 07:12:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:32:01.729166
- Title: Identity-Consistent Diffusion Network for Grading Knee Osteoarthritis Progression in Radiographic Imaging
- Title(参考訳): 放射線画像診断における変形性膝関節症進行に対するID-Consistent Diffusion Network
- Authors: Wenhua Wu, Kun Hu, Wenxi Yue, Wei Li, Milena Simic, Changyang Li, Wei Xiang, Zhiyong Wang,
- Abstract要約: 変形性膝関節症(KOA)は、身体障害を引き起こす関節炎の一般的な形態である。
KOAの重症度と進行度を自動的に評価するコンピュータ支援技術は、KOA治療と疾患管理に大きな効果がある。
本研究では, IC-RDN(Identity-Consistent Radiographic Diffusion Network)という新しい生成モデルを提案する。
- 参考スコア(独自算出の注目度): 22.005283322766832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knee osteoarthritis (KOA), a common form of arthritis that causes physical disability, has become increasingly prevalent in society. Employing computer-aided techniques to automatically assess the severity and progression of KOA can greatly benefit KOA treatment and disease management. Particularly, the advancement of X-ray technology in KOA demonstrates its potential for this purpose. Yet, existing X-ray prognosis research generally yields a singular progression severity grade, overlooking the potential visual changes for understanding and explaining the progression outcome. Therefore, in this study, a novel generative model is proposed, namely Identity-Consistent Radiographic Diffusion Network (IC-RDN), for multifaceted KOA prognosis encompassing a predicted future knee X-ray scan conditioned on the baseline scan. Specifically, an identity prior module for the diffusion and a downstream generation-guided progression prediction module are introduced. Compared to conventional image-to-image generative models, identity priors regularize and guide the diffusion to focus more on the clinical nuances of the prognosis based on a contrastive learning strategy. The progression prediction module utilizes both forecasted and baseline knee scans, and a more comprehensive formulation of KOA severity progression grading is expected. Extensive experiments on a widely used public dataset, OAI, demonstrate the effectiveness of the proposed method.
- Abstract(参考訳): 変形性膝関節症(KOA)は、身体障害を引き起こす一般的な関節炎である。
KOAの重症度と進行度を自動的に評価するためにコンピュータ支援技術を利用することは、KOA治療と疾患管理に大きな利益をもたらす。
特に、KOAにおけるX線技術の進歩は、その可能性を示している。
しかし、既存のX線予後研究は一般的に、進行結果の理解と説明のための潜在的な視覚的変化を見越して、特異な進行重症度を生じる。
そこで本研究では,新しい生成モデル,IC-RDN(Identity-Consistent Radiographic Diffusion Network)を提案する。
具体的には、拡散のためのアイデンティティ事前モジュールと、下流生成誘導進行予測モジュールを導入する。
従来のイメージ・ツー・イメージ生成モデルと比較して、アイデンティティは正規化され、対照的な学習戦略に基づいて、予後の臨床的ニュアンスにもっと焦点を合わせるように拡散を誘導する。
進行予測モジュールは, 予測およびベースライン膝スキャンを併用し, KOA重症度評価のより包括的な定式化が期待される。
広く利用されている公開データセットであるOAIの大規模な実験により,提案手法の有効性が実証された。
関連論文リスト
- Multi-task Learning Approach for Intracranial Hemorrhage Prognosis [0.0]
本稿では,Glasgow Coma Scale と Age の3次元マルチタスク画像モデルを提案する。
提案手法は現状のベースライン画像モデルより優れており,CTスキャンのみを入力として用いた4名の脳神経科医と比較してICH予後に優れていた。
論文 参考訳(メタデータ) (2024-08-16T14:56:17Z) - Synthesizing Bidirectional Temporal States of Knee Osteoarthritis
Radiographs with Cycle-Consistent Generative Adversarial Neural Networks [0.11249583407496219]
変形性膝関節症(KOA)の過去と将来の経過をX線写真で解析するために,CycleGANモデルを訓練した。
このモデルは, 将来の疾患状態において特に有効であり, 後期X線像を早期に遡及的に移行する異常な能力を示した。
論文 参考訳(メタデータ) (2023-11-10T00:15:00Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - End-To-End Prediction of Knee Osteoarthritis Progression With
Multi-Modal Transformers [2.9822184411723645]
変形性膝関節症(KOA)は慢性筋骨格疾患である。
我々は、Deep Learningの最近の進歩を活用し、膝画像データのマルチモーダル融合のための統一的なフレームワークを開発した。
追跡分析の結果,画像データからの予測は外傷後の被験者に対してより正確であることが示唆された。
論文 参考訳(メタデータ) (2023-07-03T09:10:57Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
本稿では,KellgrenおよびLawrenceグレードの分類をX線から自動的に評価する,深層学習ベースのフレームワークであるOsteHRNetを提案する。
提案モデルでは,OAIデータセットのベースラインコホートにおいて,71.74%,0.311のMAEが最良である。
論文 参考訳(メタデータ) (2021-06-27T17:29:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。