PhysFlow: Skin tone transfer for remote heart rate estimation through conditional normalizing flows
- URL: http://arxiv.org/abs/2407.21519v1
- Date: Wed, 31 Jul 2024 10:44:31 GMT
- Title: PhysFlow: Skin tone transfer for remote heart rate estimation through conditional normalizing flows
- Authors: Joaquim Comas, Antonia Alomar, Adria Ruiz, Federico Sukno,
- Abstract summary: We introduce PhysFlow, a novel method for augmenting skin diversity in remote heart rate estimation using conditional normalizing flows.
PhysFlow adopts end-to-end training optimization, enabling simultaneous training of supervised r approaches on both original and generated data.
We validate PhysFlow on publicly available datasets, UCLA-r and MMPD, demonstrating reduced heart rate error, particularly in dark skin tones.
- Score: 8.324691721547202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep learning methods have shown impressive results for camera-based remote physiological signal estimation, clearly surpassing traditional methods. However, the performance and generalization ability of Deep Neural Networks heavily depends on rich training data truly representing different factors of variation encountered in real applications. Unfortunately, many current remote photoplethysmography (rPPG) datasets lack diversity, particularly in darker skin tones, leading to biased performance of existing rPPG approaches. To mitigate this bias, we introduce PhysFlow, a novel method for augmenting skin diversity in remote heart rate estimation using conditional normalizing flows. PhysFlow adopts end-to-end training optimization, enabling simultaneous training of supervised rPPG approaches on both original and generated data. Additionally, we condition our model using CIELAB color space skin features directly extracted from the facial videos without the need for skin-tone labels. We validate PhysFlow on publicly available datasets, UCLA-rPPG and MMPD, demonstrating reduced heart rate error, particularly in dark skin tones. Furthermore, we demonstrate its versatility and adaptability across different data-driven rPPG methods.
Related papers
- Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping [1.498019339784467]
We propose novel alternatives to the traditional iVFM optimization scheme by utilizing physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach.
Both approaches demonstrate comparable reconstruction performance to the original iVFM algorithm.
The study also suggests potential applications of PINNs in ultrafast color Doppler imaging and the incorporation of fluid dynamics equations to derive biomarkers for cardiovascular diseases based on blood flow.
arXiv Detail & Related papers (2024-03-19T17:35:17Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation
of rPPG [2.82697733014759]
r (pg photoplethysmography) is a technology that measures and analyzes BVP (Blood Volume Pulse) by using the light absorption characteristics of hemoglobin captured through a camera.
This study is to provide a framework to evaluate various r benchmarking techniques across a wide range of datasets for fair evaluation and comparison.
arXiv Detail & Related papers (2023-07-24T09:35:47Z) - PhysFormer++: Facial Video-based Physiological Measurement with SlowFast
Temporal Difference Transformer [76.40106756572644]
Recent deep learning approaches focus on mining subtle clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose two end-to-end video transformer based on PhysFormer and Phys++++, to adaptively aggregate both local and global features for r representation enhancement.
Comprehensive experiments are performed on four benchmark datasets to show our superior performance on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2023-02-07T15:56:03Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
We propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data.
The proposed NeurMAP is an approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets.
arXiv Detail & Related papers (2022-04-26T08:09:47Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - The Way to my Heart is through Contrastive Learning: Remote
Photoplethysmography from Unlabelled Video [10.479541955106328]
The ability to reliably estimate physiological signals from video is a powerful tool in low-cost, pre-clinical health monitoring.
We propose a new approach to remote photoplethysmography (r) - the measurement of blood volume changes from observations of a person's face or skin.
arXiv Detail & Related papers (2021-11-18T15:21:33Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Meta-rPPG: Remote Heart Rate Estimation Using a Transductive
Meta-Learner [15.701494085639007]
Remote heart rate estimation is done using remote photoplethysmography (r)
We propose a transductive meta-learner that takes unlabeled samples during testing (deployment) for a self-supervised weight adjustment.
arXiv Detail & Related papers (2020-07-14T03:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.