The Impacts of AI Avatar Appearance and Disclosure on User Motivation
- URL: http://arxiv.org/abs/2407.21521v1
- Date: Wed, 31 Jul 2024 10:48:55 GMT
- Title: The Impacts of AI Avatar Appearance and Disclosure on User Motivation
- Authors: Boele Visser, Peter van der Putten, Amirhossein Zohrehvand,
- Abstract summary: This study examines the influence of perceived AI features on user motivation in virtual interactions.
We conducted a game-based experiment involving over 72,500 participants who solved search problems alone or with an AI companion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study examines the influence of perceived AI features on user motivation in virtual interactions. AI avatars, being disclosed as being an AI, or embodying specific genders, could be used in user-AI interactions. Leveraging insights from AI and avatar research, we explore how AI disclosure and gender affect user motivation. We conducted a game-based experiment involving over 72,500 participants who solved search problems alone or with an AI companion. Different groups experienced varying AI appearances and disclosures. We measured play intensity. Results revealed that the presence of another avatar led to less intense play compared to solo play. Disclosure of the avatar as AI heightened effort intensity compared to non-disclosed AI companions. Additionally, a masculine AI appearance reduced effort intensity.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - AI-rays: Exploring Bias in the Gaze of AI Through a Multimodal Interactive Installation [7.939652622988465]
We introduce AI-rays, an interactive installation where AI generates speculative identities from participants' appearance.
It uses speculative X-ray visions to contrast reality with AI-generated assumptions, metaphorically highlighting AI's scrutiny and biases.
arXiv Detail & Related papers (2024-10-03T18:44:05Z) - Navigating AI Fallibility: Examining People's Reactions and Perceptions of AI after Encountering Personality Misrepresentations [7.256711790264119]
Hyper-personalized AI systems profile people's characteristics to provide personalized recommendations.
These systems are not immune to errors when making inferences about people's most personal traits.
We present two studies to examine how people react and perceive AI after encountering personality misrepresentations.
arXiv Detail & Related papers (2024-05-25T21:27:15Z) - Interrogating AI: Characterizing Emergent Playful Interactions with ChatGPT [10.907980864371213]
This study focuses on playful interactions exhibited by users of a popular AI technology, ChatGPT.
We found that more than half (54%) of user discourse revolved around playful interactions.
It examines how these interactions can help users understand AI's agency, shape human-AI relationships, and provide insights for designing AI systems.
arXiv Detail & Related papers (2024-01-16T14:44:13Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted.
To help people appropriately rely on AI aids, we propose showing them behavior descriptions.
arXiv Detail & Related papers (2023-01-06T00:33:08Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Does the Whole Exceed its Parts? The Effect of AI Explanations on
Complementary Team Performance [44.730580857733]
Prior studies observed improvements from explanations only when the AI, alone, outperformed both the human and the best team.
We conduct mixed-method user studies on three datasets, where an AI with accuracy comparable to humans helps participants solve a task.
We find explanations increase the chance that humans will accept the AI's recommendation, regardless of its correctness.
arXiv Detail & Related papers (2020-06-26T03:34:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.