論文の概要: Probabilistic Scoring Lists for Interpretable Machine Learning
- arxiv url: http://arxiv.org/abs/2407.21535v1
- Date: Wed, 31 Jul 2024 11:44:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:02:39.939171
- Title: Probabilistic Scoring Lists for Interpretable Machine Learning
- Title(参考訳): 解釈可能な機械学習のための確率的スコアリスト
- Authors: Jonas Hanselle, Stefan Heid, Johannes Fürnkranz, Eyke Hüllermeier,
- Abstract要約: スコアリングシステムは、一連の特徴を確認し、満足している各特徴の合計スコアに一定数のポイントを追加し、最終的にスコアをしきい値と比較して決定する単純な決定モデルである。
本稿では、確率的スコアリングリスト(PSL)と呼ばれるスコアリングシステムの実践的な拡張と、データからPSLを学習する方法を提案する。
- 参考スコア(独自算出の注目度): 20.644711679310152
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A scoring system is a simple decision model that checks a set of features, adds a certain number of points to a total score for each feature that is satisfied, and finally makes a decision by comparing the total score to a threshold. Scoring systems have a long history of active use in safety-critical domains such as healthcare and justice, where they provide guidance for making objective and accurate decisions. Given their genuine interpretability, the idea of learning scoring systems from data is obviously appealing from the perspective of explainable AI. In this paper, we propose a practically motivated extension of scoring systems called probabilistic scoring lists (PSL), as well as a method for learning PSLs from data. Instead of making a deterministic decision, a PSL represents uncertainty in the form of probability distributions, or, more generally, probability intervals. Moreover, in the spirit of decision lists, a PSL evaluates features one by one and stops as soon as a decision can be made with enough confidence. To evaluate our approach, we conduct a case study in the medical domain.
- Abstract(参考訳): スコアリングシステムは、一連の特徴を確認し、満足している各特徴の合計スコアに一定数のポイントを追加し、最終的にスコアをしきい値と比較して決定する単純な決定モデルである。
スコーリングシステムは、医療や司法などの安全上重要な領域において、客観的かつ正確な決定を行うためのガイダンスを提供するために、長い歴史がある。
真の解釈可能性を考えると、データからスコアリングシステムを学ぶという考えは、説明可能なAIの観点から明らかに魅力的である。
本稿では,確率的スコアリングリスト(PSL)と呼ばれるスコアリングシステムの実践的な拡張と,データからPSLを学習する方法を提案する。
決定論的決定をする代わりに、PSLは確率分布の形での不確実性を表す。
さらに、意思決定リストの精神では、PSLは特徴を一つずつ評価し、十分な自信を持って決定を下すことができるとすぐに停止する。
アプローチを評価するため,医療分野でケーススタディを実施している。
関連論文リスト
- A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
大規模言語モデル(LLM)における最初の形式的確率的評価フレームワークを紹介する。
モデルの出力分布に関する高い確率保証を持つ新しい指標を導出する。
私たちのメトリクスはアプリケーションに依存しないので、デプロイ前にモデル機能についてより信頼性の高い見積を行うことができます。
論文 参考訳(メタデータ) (2024-10-04T15:44:23Z) - The Distributional Uncertainty of the SHAP score in Explainable Machine Learning [2.655371341356892]
本稿では,未知の実体集団分布下でのSHAPスコアの推論の原理的枠組みを提案する。
我々は,この関数の最大値と最小値を求める基本的な問題について検討し,すべての特徴のSHAPスコアに対して厳密な範囲を決定できることを示した。
論文 参考訳(メタデータ) (2024-01-23T13:04:02Z) - Preservation of Feature Stability in Machine Learning Under Data Uncertainty for Decision Support in Critical Domains [0.0]
人間の活動における決定は、しばしば重要な領域であっても不完全なデータに依存する。
本稿では,従来の機械学習手法を用いた一連の実験を行うことで,このギャップに対処する。
ML記述法は,データの不完全性が増大するにつれて特徴選択の安定性を確保しつつ,高い分類精度を維持する。
論文 参考訳(メタデータ) (2024-01-19T22:11:54Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - One Model Many Scores: Using Multiverse Analysis to Prevent Fairness Hacking and Evaluate the Influence of Model Design Decisions [4.362723406385396]
設計と評価の決定の公平さをよりよく理解するために,多変量解析をどのように利用できるかを示す。
結果から,システム評価に関する決定が,同じモデルに対して,極めて異なる公平度指標を導出する可能性を強調した。
論文 参考訳(メタデータ) (2023-08-31T12:32:43Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
政策の長期的業績に関する不確実性の定量化は、シーケンシャルな意思決定タスクを解決するために重要である。
モデルに基づくベイズ強化学習の観点から問題を考察する。
本稿では,値分布関数を学習するモデルに基づくアルゴリズムであるEpicemic Quantile-Regression(EQR)を提案する。
論文 参考訳(メタデータ) (2023-08-12T14:59:19Z) - Improving Selective Visual Question Answering by Learning from Your
Peers [74.20167944693424]
VQA(Visual Question Answering)モデルは、間違っていた場合の回答を控えるのに苦労する可能性がある。
本稿では,複数モーダル選択関数の学習におけるLearning from Your Peers (LYP) アプローチを提案する。
提案手法では,学習データの異なるサブセットに基づいて訓練されたモデルの予測を,選択的VQAモデルの最適化のターゲットとして利用する。
論文 参考訳(メタデータ) (2023-06-14T21:22:01Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。