MicroMIL: Graph-based Contextual Multiple Instance Learning for Patient Diagnosis Using Microscopy Images
- URL: http://arxiv.org/abs/2407.21604v2
- Date: Fri, 07 Mar 2025 15:44:36 GMT
- Title: MicroMIL: Graph-based Contextual Multiple Instance Learning for Patient Diagnosis Using Microscopy Images
- Authors: JongWoo Kim, Bryan Wong, Huazhu Fu, Willmer Rafell QuiƱones, MunYong Yi,
- Abstract summary: Cancer diagnosis has greatly benefited from the integration of whole-slide images with multiple instance learning (MIL)<n>We introduce MicroMIL, the first weakly-supervised MIL framework specifically designed for microscopy imaging.<n>Experiments on a real-world colon cancer dataset and the BreakHis dataset demonstrate that MicroMIL achieves state-of-the-art performance.
- Score: 31.82944216665197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cancer diagnosis has greatly benefited from the integration of whole-slide images (WSIs) with multiple instance learning (MIL), enabling high-resolution analysis of tissue morphology. Graph-based MIL (GNN-MIL) approaches have emerged as powerful solutions for capturing spatial and relational structures in WSIs, thereby improving diagnostic accuracy. However, despite their effectiveness, WSIs require significant computational and infrastructural resources, limiting accessibility in resource-constrained settings. Microscopy imaging provides a cost-effective alternative, but applying GNN-MIL to microscopy imaging is challenging due to the absence of spatial coordinates and the high redundancy in pathologist-acquired images. To address these issues, we introduce MicroMIL, the first weakly-supervised MIL framework specifically designed for microscopy imaging. MicroMIL leverages a representative image extractor (RIE) that employs deep cluster embedding (DCE) and hard Gumbel-Softmax to dynamically reduce redundancy and select representative images. These selected images serve as graph nodes, with edges determined by cosine similarity, eliminating the need for spatial coordinates while preserving relational structure. Extensive experiments on a real-world colon cancer dataset and the BreakHis dataset demonstrate that MicroMIL achieves state-of-the-art performance, improving both diagnostic accuracy and robustness to redundancy. The code is available at https://anonymous.4open.science/r/MicroMIL-6C7C
Related papers
- Macro2Micro: Cross-modal Magnetic Resonance Imaging Synthesis Leveraging Multi-scale Brain Structures [6.2458748518915135]
We introduce Macro2Micro, a deep learning framework that predicts brain microstructure from macrostructure using a Generative Adversarial Network (GAN)
Our results show that Macro2Micro faithfully translates T1-weighted MRIs into corresponding Fractional Anisotropy (FA) images, achieving a 6.8% improvement in the Structural Similarity Index Measure (SSIM) compared to previous methods.
arXiv Detail & Related papers (2024-12-15T18:49:20Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.
Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - CARMIL: Context-Aware Regularization on Multiple Instance Learning models for Whole Slide Images [0.41873161228906586]
Multiple Instance Learning models have proven effective for cancer prognosis from Whole Slide Images.
The original MIL formulation incorrectly assumes the patches of the same image to be independent.
We propose a versatile regularization scheme designed to seamlessly integrate spatial knowledge into any MIL model.
arXiv Detail & Related papers (2024-08-01T09:59:57Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
We propose a framework named MamMIL for WSI analysis.
We represent each WSI as an undirected graph.
To address the problem that Mamba can only process 1D sequences, we propose a topology-aware scanning mechanism.
arXiv Detail & Related papers (2024-03-08T09:02:13Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural Networks [31.87960207119459]
We propose an improved methodology that leverages the spatial context of tiles for more robust and smoother segmentation.
To address the irregular shapes of tiles, we utilize Graph Neural Networks (GNNs) to propagate context information across neighboring regions.
Our findings demonstrate that context-aware GNN algorithms can robustly find tumor demarcations on HSI images.
arXiv Detail & Related papers (2023-11-20T14:07:38Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Cross-scale Multi-instance Learning for Pathological Image Diagnosis [20.519711186151635]
Multi-instance learning (MIL) is a common solution for working with high resolution images by classifying bags of objects.
We propose a novel cross-scale MIL algorithm to explicitly aggregate inter-scale relationships into a single MIL network for pathological image diagnosis.
arXiv Detail & Related papers (2023-04-01T03:52:52Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Histopathological Image Classification based on Self-Supervised Vision
Transformer and Weak Labels [16.865729758055448]
We propose Self-ViT-MIL, a novel approach for classifying and localizing cancerous areas based on slide-level annotations.
Self-ViT-MIL surpasses existing state-of-the-art MIL-based approaches in terms of accuracy and area under the curve.
arXiv Detail & Related papers (2022-10-17T12:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.