CARMIL: Context-Aware Regularization on Multiple Instance Learning models for Whole Slide Images
- URL: http://arxiv.org/abs/2408.00427v2
- Date: Mon, 12 Aug 2024 08:45:19 GMT
- Title: CARMIL: Context-Aware Regularization on Multiple Instance Learning models for Whole Slide Images
- Authors: Thiziri Nait Saada, Valentina Di Proietto, Benoit Schmauch, Katharina Von Loga, Lucas Fidon,
- Abstract summary: Multiple Instance Learning models have proven effective for cancer prognosis from Whole Slide Images.
The original MIL formulation incorrectly assumes the patches of the same image to be independent.
We propose a versatile regularization scheme designed to seamlessly integrate spatial knowledge into any MIL model.
- Score: 0.41873161228906586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple Instance Learning (MIL) models have proven effective for cancer prognosis from Whole Slide Images. However, the original MIL formulation incorrectly assumes the patches of the same image to be independent, leading to a loss of spatial context as information flows through the network. Incorporating contextual knowledge into predictions is particularly important given the inclination for cancerous cells to form clusters and the presence of spatial indicators for tumors. State-of-the-art methods often use attention mechanisms eventually combined with graphs to capture spatial knowledge. In this paper, we take a novel and transversal approach, addressing this issue through the lens of regularization. We propose Context-Aware Regularization for Multiple Instance Learning (CARMIL), a versatile regularization scheme designed to seamlessly integrate spatial knowledge into any MIL model. Additionally, we present a new and generic metric to quantify the Context-Awareness of any MIL model when applied to Whole Slide Images, resolving a previously unexplored gap in the field. The efficacy of our framework is evaluated for two survival analysis tasks on glioblastoma (TCGA GBM) and colon cancer data (TCGA COAD).
Related papers
- Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
We introduce two pathological priors: nuclear disease of cells and spatial correlation of pathological tiles.
We propose a data augmentation method that utilizes stain separation during extractor training.
We then describe the spatial relationships between the tiles using an adjacency matrix.
By integrating these two views, we designed a multi-instance framework for analyzing H&E-stained tissue images.
arXiv Detail & Related papers (2023-07-12T16:14:23Z) - CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images [3.1118773046912382]
We propose the Context-Aware Multiple Instance Learning (CAMIL) architecture for cancer diagnosis.
CAMIL incorporates neighbor-constrained attention to consider dependencies among tiles within a Whole Slide Images (WSI) and integrates contextual constraints as prior knowledge.
We evaluate CAMIL on subtyping non-small cell lung cancer (TCGA-NSCLC) and detecting lymph node metastasis, achieving test AUCs of 97.5%, 95.9%, and 88.1%, respectively.
arXiv Detail & Related papers (2023-05-09T10:06:37Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Whole Slide Images based Cancer Survival Prediction using Attention
Guided Deep Multiple Instance Learning Networks [38.39901070720532]
Current image-based survival models that limit to key patches or clusters derived from Whole Slide Images (WSIs)
We propose Deep Attention Multiple Instance Survival Learning (DeepAttnMISL) by introducing both siamese MI-FCN and attention-based MIL pooling.
We evaluated our methods on two large cancer whole slide images datasets and our results suggest that the proposed approach is more effective and suitable for large datasets.
arXiv Detail & Related papers (2020-09-23T14:31:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.