論文の概要: Grid-Based Decompositions for Spatial Data under Local Differential Privacy
- arxiv url: http://arxiv.org/abs/2407.21624v1
- Date: Wed, 31 Jul 2024 14:17:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:27:41.672382
- Title: Grid-Based Decompositions for Spatial Data under Local Differential Privacy
- Title(参考訳): 局所微分プライバシー下における空間データのグリッドによる分解
- Authors: Berkay Kemal Balioglu, Alireza Khodaie, Ameer Taweel, Mehmet Emre Gursoy,
- Abstract要約: LDP下での空間データに対するグリッドを用いた3つの分解手法について検討した。
UG,PrivAG,AAGの3つの実世界の位置情報データセット,さまざまなプライバシ予算,クエリサイズを実験的に比較した。
その結果,AAGはPrivAGよりも有効性が高く,提案手法の優位性を示している。
- 参考スコア(独自算出の注目度): 0.9599644507730105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local differential privacy (LDP) has recently emerged as a popular privacy standard. With the growing popularity of LDP, several recent works have applied LDP to spatial data, and grid-based decompositions have been a common building block in the collection and analysis of spatial data under DP and LDP. In this paper, we study three grid-based decomposition methods for spatial data under LDP: Uniform Grid (UG), PrivAG, and AAG. UG is a static approach that consists of equal-sized cells. To enable data-dependent decomposition, PrivAG was proposed by Yang et al. as the most recent adaptive grid method. To advance the state-of-the-art in adaptive grids, in this paper we propose the Advanced Adaptive Grid (AAG) method. For each grid cell, following the intuition that the cell's intra-cell density distribution will be affected by its neighbors, AAG performs uneven cell divisions depending on the neighboring cells' densities. We experimentally compare UG, PrivAG, and AAG using three real-world location datasets, varying privacy budgets, and query sizes. Results show that AAG provides higher utility than PrivAG, demonstrating the superiority of our proposed approach. Furthermore, UG's performance is heavily dependent on the choice of grid size. When the grid size is chosen optimally in UG, AAG still beats UG for small queries, but UG beats AAG for large (coarse-grained) queries.
- Abstract(参考訳): ローカルディファレンシャルプライバシ(LDP)は、最近、一般的なプライバシ標準として登場した。
LDPの普及に伴い、近年のいくつかの研究が空間データにLDPを適用し、グリッドベースの分解はDPとLDPの下での空間データの収集と解析において一般的なビルディングブロックとなっている。
本稿では,LDPの下での空間データに対するグリッドを用いた3つの分解手法について検討する。
UGは、等サイズの細胞からなる静的なアプローチである。
データ依存分解を可能にするため、PrivAGはYangらによって最新の適応格子法として提案された。
本稿では,適応格子の最先端化に向けて,Advanced Adaptive Grid (AAG) 法を提案する。
各格子細胞について、細胞の内部密度分布が隣人によって影響を受けるという直感に続いて、AAGは隣人の細胞密度に応じて不均一な細胞分裂を行う。
UG,PrivAG,AAGの3つの実世界の位置情報データセット,さまざまなプライバシ予算,クエリサイズを実験的に比較した。
その結果,AAGはPrivAGよりも有効性が高く,提案手法の優位性を示している。
さらに、UGの性能はグリッドサイズの選択に大きく依存している。
グリッドサイズがUGで最適に選択されると、AAGは小さなクエリでUGに勝るが、UGは大きな(粗い)クエリでAAGに勝る。
関連論文リスト
- ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
ShapeNetとModelNetを用いた大規模3DGSデータセットを構築した。
データセットのShapeSplatは、87のユニークなカテゴリから65Kのオブジェクトで構成されています。
textbftextitGaussian-MAEを導入し、ガウスパラメータからの表現学習の独特な利点を強調した。
論文 参考訳(メタデータ) (2024-08-20T14:49:14Z) - Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation [31.106636947179005]
教師なしグラフドメイン適応(Unsupervised Graph Domain Adaptation)は、ラベル豊富なソースグラフからラベルなしターゲットグラフへの知識の転送を含む。
GDABenchと呼ばれる教師なしグラフ領域適応のための最初の包括的なベンチマークを示す。
我々は、現在のUGDAモデルの性能がデータセットや適応シナリオによって大きく異なることを観察する。
論文 参考訳(メタデータ) (2024-07-09T06:44:09Z) - LEAD: Learning Decomposition for Source-free Universal Domain Adaptation [17.94547232392788]
LEArning Decomposition(LEArning Decomposition)という新たなアイデアを提案する。
VisDAデータセットのOPDAシナリオでは、LEADはGLCを3.5%上回り、疑似ラベル決定境界を導出する75%の時間を短縮する。
論文 参考訳(メタデータ) (2024-03-06T03:08:20Z) - Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
差分的プライベート勾配降下(DP-SGD)により、モデルはプライバシ保護の方法でトレーニングできる。
DP-ZO(DP-ZO)は,ゼロオーダー最適化手法を民営化することで,大規模言語モデルのためのプライベートな微調整フレームワークである。
論文 参考訳(メタデータ) (2024-01-09T03:53:59Z) - DPGOMI: Differentially Private Data Publishing with Gaussian Optimized
Model Inversion [8.204115285718437]
本稿では,ガウス最適化モデルインバージョン(DPGOMI)を用いた微分プライベートデータパブリッシングを提案し,この問題に対処する。
提案手法では, パブリックジェネレータを用いてプライベートデータを潜時空間にマッピングし, コンバージェンス特性が向上した低次元DP-GANを用いる。
以上の結果から,DPGOMIは,インセプションスコア,Freche't Inception Distance,分類性能において,標準DP-GAN法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-06T18:46:22Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - Upcycling Models under Domain and Category Shift [95.22147885947732]
グローバルかつ局所的なクラスタリング学習技術(GLC)を導入する。
我々は、異なる対象クラス間での区別を実現するために、新しい1-vs-allグローバルクラスタリングアルゴリズムを設計する。
注目すべきは、最も困難なオープンパーティルセットDAシナリオにおいて、GLCは、VisDAベンチマークでUMADを14.8%上回っていることである。
論文 参考訳(メタデータ) (2023-03-13T13:44:04Z) - RU-Net: Regularized Unrolling Network for Scene Graph Generation [92.95032610978511]
シーングラフ生成(SGG)は、オブジェクトを検出し、各オブジェクト間の関係を予測することを目的としている。
既存のSGG法は,(1)あいまいな対象表現,2)関係予測の多様性の低下など,いくつかの問題に悩まされることが多い。
両問題に対処する正規化アンローリングネットワーク(RU-Net)を提案する。
論文 参考訳(メタデータ) (2022-05-03T04:21:15Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
グラフニューラルネットワーク(GNN)は、ノード表現を学習するグラフデータ用に設計された強力なモデルである。
近年の研究では、グラフデータが機密情報を含む場合、GNNは重大なプライバシー上の懸念を生じさせることが示されている。
我々は,ノードとエッジのプライバシを保護する,差分的にプライベートなGNNであるGAPを提案する。
論文 参考訳(メタデータ) (2022-03-02T08:58:07Z) - Meta-Aggregator: Learning to Aggregate for 1-bit Graph Neural Networks [127.32203532517953]
我々は,GNNパラメータとグラフ特徴をバイナライズするバニラ1ビットフレームワークを開発した。
軽量なアーキテクチャにもかかわらず、我々はこのバニラフレームワークがグラフトポロジを区別するのに十分な差別力に悩まされていることを観察した。
この発見は、バニラ二項化GNNの表現力を向上させるためにメタアグリゲータを考案する動機となる。
論文 参考訳(メタデータ) (2021-09-27T08:50:37Z) - DataLens: Scalable Privacy Preserving Training via Gradient Compression
and Aggregation [15.63770709526671]
スケーラブルなプライバシー保護生成モデルDataLENSを提案します。
その結果,DATALENSは他のベースラインDP生成モデルよりも優れていた。
DataLENSの主要なビルディングブロックの一つである提案されたTOPAGGアプローチをDP SGDトレーニングに適応させます。
論文 参考訳(メタデータ) (2021-03-20T06:14:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。