論文の概要: Comgra: A Tool for Analyzing and Debugging Neural Networks
- arxiv url: http://arxiv.org/abs/2407.21656v1
- Date: Wed, 31 Jul 2024 14:57:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 17:41:37.612371
- Title: Comgra: A Tool for Analyzing and Debugging Neural Networks
- Title(参考訳): Comgra: ニューラルネットワークの分析とデバッグツール
- Authors: Florian Dietz, Sophie Fellenz, Dietrich Klakow, Marius Kloft,
- Abstract要約: PyTorchで使用するオープンソースのpythonライブラリであるcomgraを紹介します。
Comgraはモデルの内部アクティベーションに関するデータを抽出し、GUIで整理する。
要約統計と個々のデータポイントの両方を示し、トレーニングの初期段階と後期を比較し、関心のある個々のサンプルに注目し、ネットワークを通しての勾配の流れを可視化する。
- 参考スコア(独自算出の注目度): 35.89730807984949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Networks are notoriously difficult to inspect. We introduce comgra, an open source python library for use with PyTorch. Comgra extracts data about the internal activations of a model and organizes it in a GUI (graphical user interface). It can show both summary statistics and individual data points, compare early and late stages of training, focus on individual samples of interest, and visualize the flow of the gradient through the network. This makes it possible to inspect the model's behavior from many different angles and save time by rapidly testing different hypotheses without having to rerun it. Comgra has applications for debugging, neural architecture design, and mechanistic interpretability. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at https://github.com/FlorianDietz/comgra.
- Abstract(参考訳): ニューラルネットワークは検査が難しいことで有名です。
PyTorchで使用するオープンソースのpythonライブラリであるcomgraを紹介します。
Comgraはモデルの内部アクティベーションに関するデータを抽出し、GUI(グラフィックユーザインタフェース)で整理する。
要約統計と個々のデータポイントの両方を示し、トレーニングの初期段階と後期を比較し、関心のある個々のサンプルに注目し、ネットワークを通しての勾配の流れを可視化する。
これにより、さまざまな角度からモデルの振る舞いを検査し、異なる仮説を素早くテストすることで、再実行することなく時間を節約することができる。
Comgraにはデバッギング、ニューラルアーキテクチャ設計、メカニスティック解釈可能性のためのアプリケーションがある。
Python Package Index (PyPI)を通じてライブラリを公開し、https://github.com/FlorianDietz/comgra.comでコード、ドキュメント、チュートリアルを提供します。
関連論文リスト
- pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$は、さまざまなPyTorchモジュールに対するカスタマイズ可能な介入をサポートするオープンソースライブラリである。
私たちは、$textbfpyvene$が、ニューラルモデルへの介入を実行し、他のモデルとインターバルされたモデルを共有するための統一されたフレームワークを提供する方法を示します。
論文 参考訳(メタデータ) (2024-03-12T16:46:54Z) - Interpreting Deep Neural Networks with the Package innsight [0.951828574518325]
innsightは一般的に、ニューラルネットワークのための機能属性メソッドを実装する最初のRパッケージである。
ディープラーニングライブラリとは独立して動作し、任意のRパッケージからモデルの解釈を可能にする。
Innsightは、トーチパッケージの高速かつ効率的な配列計算から内部的に恩恵を受ける。
論文 参考訳(メタデータ) (2023-06-19T10:12:32Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTSは、部分的に保存された時系列のデータマイニングと分析に特化した、オープンソースのPythonライブラリである。
これは、計算、分類、クラスタリング、予測の4つのタスクに分類される多様なアルゴリズムに容易にアクセスできる。
論文 参考訳(メタデータ) (2023-05-30T07:57:05Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfnはPyTorchライブラリで、このニーズに対処することを目指している。
環境のためのシンプルなAPIと、サンプルと損失のための有用な抽象化を提供する。
論文 参考訳(メタデータ) (2023-05-24T00:20:59Z) - PyTorch Geometric Signed Directed: A Software Package on Graph Neural
Networks for Signed and Directed Graphs [20.832917829426098]
PyGSD (PyTorch Geometric Signed Directed) は、PyGSDのソフトウェアパッケージである。
PyGSDは、使い易いGNNモデル、合成および実世界のデータ、タスク固有の評価指標と損失関数で構成されている。
PyGの拡張ライブラリとして提案されているソフトウェアは、オープンソースリリース、詳細なドキュメント、継続的インテグレーション、ユニットテスト、コードカバレッジチェックでメンテナンスされています。
論文 参考訳(メタデータ) (2022-02-22T10:25:59Z) - Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data
via Differentiable Cross-Approximation [53.95297550117153]
本稿では,大規模な視覚データテンソルの処理を行うエンドツーエンドのトレーニング可能なフレームワークを提案する。
提案手法は大規模多次元グリッドデータや,大規模受容領域上のコンテキストを必要とするタスクに特に有用である。
論文 参考訳(メタデータ) (2021-05-29T08:39:57Z) - Efficient Graph Deep Learning in TensorFlow with tf_geometric [53.237754811019464]
グラフ深層学習のための効率的でフレンドリなライブラリであるtf_geometricを導入する。
tf_geometricは、人気のあるGNNの実装と同様に、グラフニューラルネットワーク(GNN)を構築するためのカーネルライブラリを提供する。
カーネルライブラリは、グラフデータ構造、グラフマップ-リデュースフレームワーク、グラフミニバッチ戦略など、効率的なGNNを構築するためのインフラストラクチャで構成されている。
論文 参考訳(メタデータ) (2021-01-27T17:16:36Z) - TensorX: Extensible API for Neural Network Model Design and Deployment [0.0]
TensorFlowXは、計算における複雑なニューラルネットワークモデルのプロトタイピング、設計、デプロイのためのPythonライブラリである。
使いやすさ、パフォーマンス、APIの一貫性に特に重点を置いています。
論文 参考訳(メタデータ) (2020-12-29T00:15:38Z) - Little Ball of Fur: A Python Library for Graph Sampling [8.089234432461804]
Little Ball of Furは、20以上のグラフサンプリングアルゴリズムを含むPythonライブラリである。
本稿では,ソーシャルネットワークとWebグラフのグローバルな統計を推定することにより,図書館の実用性を示す。
論文 参考訳(メタデータ) (2020-06-08T01:35:24Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
ガウス過程(GP)を用いたマルチチャネルデータモデリングのためのPythonパッケージMOGPTKを提案する。
このツールキットの目的は、研究者、データサイエンティスト、実践者にもMOGP(multi-output GP)モデルを利用できるようにすることである。
論文 参考訳(メタデータ) (2020-02-09T23:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。