論文の概要: A State-of-the-Art Review of Computational Models for Analyzing Longitudinal Wearable Sensor Data in Healthcare
- arxiv url: http://arxiv.org/abs/2407.21665v1
- Date: Wed, 31 Jul 2024 15:08:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:17:56.547769
- Title: A State-of-the-Art Review of Computational Models for Analyzing Longitudinal Wearable Sensor Data in Healthcare
- Title(参考訳): 医療における経時的ウェアラブルセンサデータ分析のための計算モデルの現状
- Authors: Paula Lago,
- Abstract要約: 長期追跡は、数ヶ月のタイムスケールで定義されており、健康変化の指標としてパターンや変化の洞察を与えることができる。
これらの知見は、医療と医療をより予測し、予防し、パーソナライズし、参加しやすくする(The 4P's)。
- 参考スコア(独自算出の注目度): 1.7872597573698263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wearable devices are increasingly used as tools for biomedical research, as the continuous stream of behavioral and physiological data they collect can provide insights about our health in everyday contexts. Long-term tracking, defined in the timescale of months of year, can provide insights of patterns and changes as indicators of health changes. These insights can make medicine and healthcare more predictive, preventive, personalized, and participative (The 4P's). However, the challenges in modeling, understanding and processing longitudinal data are a significant barrier to their adoption in research studies and clinical settings. In this paper, we review and discuss three models used to make sense of longitudinal data: routines, rhythms and stability metrics. We present the challenges associated with the processing and analysis of longitudinal wearable sensor data, with a special focus on how to handle the different temporal dynamics at various granularities. We then discuss current limitations and identify directions for future work. This review is essential to the advancement of computational modeling and analysis of longitudinal sensor data for pervasive healthcare.
- Abstract(参考訳): ウェアラブルデバイスは、彼らが収集する行動や生理的なデータの連続的な流れが、日々の状況における私たちの健康についての洞察を提供するため、生物医学研究のツールとしてますます使われています。
長期追跡は、数ヶ月のタイムスケールで定義されており、健康変化の指標としてパターンや変化の洞察を与えることができる。
これらの洞察は、医療と医療をより予測し、予防し、パーソナライズし、参加させる(The 4P's)。
しかし, 縦断的データのモデリング, 理解, 処理の課題は, 研究研究や臨床現場における採用にとって大きな障壁となる。
本稿では,時系列データ(ルーチン,リズム,安定性指標)の理解に使用される3つのモデルについて検討し,考察する。
本稿では,縦型ウェアラブルセンサデータの処理と解析に関わる課題について述べる。
次に、現在の制限について議論し、今後の作業の方向性を特定します。
本総説は,広範医療における縦型センサデータのモデリングと解析の進歩に欠かせないものである。
関連論文リスト
- A Survey of Few-Shot Learning for Biomedical Time Series [3.845248204742053]
データ駆動型モデルは、臨床診断を支援し、患者のケアを改善する大きな可能性を秘めている。
ラベル付きデータの不足を克服する新たなアプローチは、人間のような能力でAIメソッドを拡張して、少数ショット学習と呼ばれる限られた例で新しいタスクを学ぶことだ。
本調査は,生物医学的時系列アプリケーションのための数ショット学習手法の総合的なレビューと比較を行う。
論文 参考訳(メタデータ) (2024-05-03T21:22:27Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - A review on longitudinal data analysis with random forest in precision
medicine [0.0]
大規模オミクスデータは患者の特徴付けに有用であるが, 経時的に測定が変化し, 経時的データに繋がることが多い。
Random forestは、予測モデルを構築するための最先端の機械学習手法の1つである。
縦断データ解析のための標準ランダムフォレスト法の拡張について検討する。
論文 参考訳(メタデータ) (2022-08-08T13:10:47Z) - Time Series Prediction using Deep Learning Methods in Healthcare [0.0]
従来の機械学習手法は、医療予測分析タスクを扱う上で2つの大きな課題に直面している。
医療データの高次元的な性質は、新しいタスクごとに適切な機能のセットを選択するために、労働集約的なプロセスを必要とする。
近年の深層学習手法は、様々な医療予測タスクに有望な性能を示した。
論文 参考訳(メタデータ) (2021-08-30T18:14:27Z) - Interpretable machine learning for high-dimensional trajectories of
aging health [0.0]
我々は、健康と生存の個人的高齢軌跡の計算モデルを構築した。
身体的、機能的、生物学的な変数を含み、人口動態、生活様式、医学的背景情報に依存する。
我々のモデルは大規模縦型データセットにスケーラブルであり、健康変数間の有向相互作用の解釈可能なネットワークを推定する。
論文 参考訳(メタデータ) (2021-05-07T17:42:15Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - DeepCoDA: personalized interpretability for compositional health data [58.841559626549376]
解釈可能性により、ドメインエキスパートはモデルの妥当性と信頼性を評価することができる。
医療の分野では、解釈可能なモデルは、技術的な要因とは無関係に、関連する生物学的メカニズムを含意すべきである。
我々は、パーソナライズされた解釈可能性について、サンプル固有の特徴属性の尺度として定義する。
論文 参考訳(メタデータ) (2020-06-02T05:14:22Z) - Patient Similarity Analysis with Longitudinal Health Data [0.5249805590164901]
電子健康記録には、医療訪問、検査、手順、および結果に関する時間分解情報が含まれている。
これらの旅の類似性を評価することで、共通の病気の軌跡を共通の健康結果とともに発見することができる。
特定のクラスタへの患者旅行の割り当ては、パーソナライズされた結果予測と治療選択の基礎となる可能性がある。
論文 参考訳(メタデータ) (2020-05-14T07:06:02Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。