Twirled worlds: symmetry-induced failures of tomographic locality
- URL: http://arxiv.org/abs/2407.21688v2
- Date: Sat, 5 Oct 2024 00:23:30 GMT
- Title: Twirled worlds: symmetry-induced failures of tomographic locality
- Authors: Daniel Centeno, Marco Erba, David Schmid, John H. Selby, Robert W. Spekkens, Sina Soltani, Jacopo Surace, Alex Wilce, Yìlè Yīng,
- Abstract summary: We develop a scheme for generating theories that violate the principle of tomographic locality.
We show that failures of tomographic locality are ubiquitous in twirled worlds.
Our results also demonstrate the need for researchers seeking to axiomatize quantum theory to take a stand.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tomographic locality is a principle commonly used in the program of finding axioms that pick out quantum theory within the landscape of possible theories. The principle asserts the sufficiency of local measurements for achieving a tomographic characterization of any bipartite state. In this work, we explore the meaning of the principle of tomographic locality by developing a simple scheme for generating a wide variety of theories that violate the principle. In this scheme, one starts with a tomographically local theory -- which can be classical, quantum or post-quantum -- and a physical symmetry, and one restricts the processes in the theory to all and only those that are covariant with respect to the collective action of that symmetry. We refer to the resulting theories as twirled worlds. We show that failures of tomographic locality are ubiquitous in twirled worlds. From the possibility of such failures in classical twirled worlds, we argue that the failure of tomographic locality (i.e., tomographic nonlocality) does not imply ontological holism. Our results also demonstrate the need for researchers seeking to axiomatize quantum theory to take a stand on the question of whether there are superselection rules that have a fundamental status.
Related papers
- New Prospects for a Causally Local Formulation of Quantum Theory [0.0]
This paper introduces a new principle of causal locality intended to improve on Bell's criteria.
It shows that systems that remain at spacelike separation cannot exert causal influences on each other.
arXiv Detail & Related papers (2024-02-26T18:19:51Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Quantum Mechanical Reality: Entanglement and Decoherence [0.0]
We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences.
Within this framework, theories are conceptual constructs applying to models generated in the phenomenal world within limited contexts.
arXiv Detail & Related papers (2023-07-22T19:08:00Z) - Derivation of Standard Quantum Theory via State Discrimination [53.64687146666141]
General Probabilistic Theories (GPTs) is a new information theoretical approach to single out standard quantum theory.
We focus on the bound of the performance for an information task called state discrimination in general models.
We characterize standard quantum theory out of general models in GPTs by the bound of the performance for state discrimination.
arXiv Detail & Related papers (2023-07-21T00:02:11Z) - Quantum Theory Needs (And Probably Has) Real Reduction [0.0]
It appears that for quantum theory to be viable in a realist sense, it must possess genuine, physical non-unitarity.
Penrose's theory of gravitation-induced collapse and the Transactional Interpretation are discussed.
arXiv Detail & Related papers (2023-04-20T21:25:23Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Resource theory of imaginarity: Quantification and state conversion [48.7576911714538]
Resource theory of imaginarity has been introduced, allowing for a systematic study of complex numbers in quantum mechanics and quantum information theory.
We investigate imaginarity quantification, focusing on the geometric imaginarity and the robustness of imaginarity, and apply these tools to the state conversion problem in imaginarity theory.
Our study reveals the significance of complex numbers in quantum physics, and proves that imaginarity is a resource in optical experiments.
arXiv Detail & Related papers (2021-03-02T15:30:27Z) - Quantum Darwinism and the spreading of classical information in
non-classical theories [0.0]
Quantum Darwinism posits that the emergence of a classical reality relies on the spreading of classical information from a quantum system to many parts of its environment.
We find that every theory with non-classical features that admits this idealized spreading of classical information must have both entangled states and entangled measurements.
Our result suggests the counter-intuitive general principle that in the presence of local non-classicality, a classical world can only emerge if this non-classicality can be "amplified" to a form of entanglement.
arXiv Detail & Related papers (2020-12-11T18:40:16Z) - Classicality without local discriminability: decoupling entanglement and
complementarity [0.0]
An operational probabilistic theory where all systems are classical, and all pure states of composite systems are entangled, is constructed.
We demonstrate that the presence of entanglement is independent of the existence of incompatible measurements.
We also prove the existence, in the theory, of a universal processor.
arXiv Detail & Related papers (2020-08-10T10:30:47Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.